Skip to main content

list manipulation - Solving the magic backyard puzzle with MMA


I was trying to solve this puzzle using mma



Mathematica graphics


It looks like the generalization of the magic square. Anyway here my attempt:-


There are four columns (x,y,z,w) and nine rowa which are denoted by the array index.


First i define the variables which have zero values


x[1] = 0; x[2] = 0; x[3] = 0; x[9] = 0; w[1] = 0;

Then the equation equating all the columns


c[1] = Sum[x[i], {i, 4, 8}];
c[2] = Sum[y[i], {i, 1, 9}];
c[3] = Sum[z[i], {i, 1, 9}];

c[4] = Sum[w[i], {i, 2, 9}];

col = Equal @@ Thread[Array[c, 4]]

Next for the rows


r[n_] := x[n] + y[n] + z[n] + w[n];
row = Equal @@ Thread[Array[r, 9]]

Here we can give some upper bound for the solutions.


all = Join[Array[x, 5, {4, 8}], Array[y, 9], Array[z, 9], Array[w, 9]];

And @@ Thread[0 <= all <= 100]

For distinct solutions:


allne = Unequal @@ 
Thread[Join[Array[x, 5, {4, 8}], Array[y, 9], Array[z, 9],
Array[w, 8, {2, 9}]]]

List of all variables


allvar = Join[
Join[Array[x, 5, {4, 8}], Array[y, 9], Array[z, 9],

Array[w, 8, {2, 9}]]]

Finally when I use FindInstance it just keeps running(its been 2hr now).


FindInstance[{col && row && And @@ Thread[0 <= all <= 100] && 
allne}, allvar, Integers]

So my question is why is FindInstance so slow even after putting bounds on integer solutions.Also can this be done by any other method.


I also tried the simplest 3Ă—3 magic square


FindInstance[
a + b + c == d + e + f == g + h + i == a + d + g == b + e + h ==

c + f + i && a != b != c != d != e != f != g != h != i, {a, b, c,
d, e, f, g, h, i}, Integers]

This also kept on running. Do you think that i just need to wait for the output because for these kind of sums mma will take that long?




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]