Skip to main content

notebooks - All the group formatting available in Mathematica



I was wondering how many pre-defined group formatting style there is in Mathematica. From Format -> Style, one see that we can go from Title (for Alt+1) to Subsubsection (Alt+6). However, this does not seem to be exhaustive. This is because, if I press Tab on a line created from any of those formattings (from Alt+1 to Alt+6), then I can automatically "move down one level" each time. However, from Subsubsection, it seems that I can still go 2 more levels down, after which Tab does its "normal" job. Are these 2 additional formattings somewhere to be found in some documentation? Are they in any way "special" and can I assign keyboard shortcuts for them as for the other ones?



Answer



The option StyleKeyMapping controls "Tab" and "Backspace" does to the style (AFAIK, it is not documented).


Row[Table[Most@NestWhileList["Tab" /. CurrentValue[{StyleDefinitions, #, StyleKeyMapping}]&,
i, Not[StringMatchQ[#, "Tab"]] &] // Column[Style[#, #] & /@ #] &,
{i, {"Chapter", "Title", "Section", "Item", "ItemParagraph", "ItemNumbered"}}], Spacer[10]]

enter image description here


The styles "Subsubsubsection" and "Subsubsubsubsection" are not listed in the Format >> Style menu.


The StyleKeyMapping option value for some "*section" styles are:



CurrentValue[{StyleDefinitions, "Subsection", StyleKeyMapping}]


{"Tab" -> "Subsubsection", "Backspace" -> "Section", KeyEvent["Tab", Modifiers -> {Shift}] -> "Section"}



CurrentValue[{StyleDefinitions, "Subsubsection", StyleKeyMapping}]


{"Tab" -> "Subsubsubsection", "Backspace" -> "Subsection", KeyEvent["Tab", Modifiers -> {Shift}] -> "Subsection"}




CurrentValue[{StyleDefinitions, "Subsubsubsection", StyleKeyMapping}]


{"Tab" -> "Subsubsubsubsection", "Backspace" -> "Subsubsection", KeyEvent["Tab", Modifiers -> {Shift}] -> "Subsubsection"}



To see the full style definitions, you can use


CurrentValue[{StyleDefinitions, "Subsubsubsection"}]


{CellMargins -> {{66, Inherited}, {2, 10}},

StyleKeyMapping -> {"Tab" -> "Subsubsubsubsection", "Backspace" -> "Subsubsection", KeyEvent["Tab", Modifiers -> {Shift}] -> "Subsubsection"},
CellGroupingRules -> {"SectionGrouping", 60},
PageBreakBelow -> False, LanguageCategory -> "NaturalLanguage", CounterIncrements -> "Subsubsubsection",
CounterAssignments -> {{"Subsubsubsubsection", 0}, {"Item", 0}, {"Subitem", 0}, {"Subsubitem", 0}, {"ItemNumbered", 0}, {"SubitemNumbered", 0}, {"SubsubitemNumbered", 0}}, MenuSortingValue -> None, FontFamily -> "Source Sans Pro",
FontSize -> 15, FontWeight -> "Bold",
FontColor -> RGBColor[0.778286411841001, 0.4230563820859083, 0.16115053025101092`]}



Similarly for 'Subsubsubsubsection".


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....