Skip to main content

numerical integration - Heat equation with nonlinear boundary condition involving time-derivative


The governing equation is shown as follows:


enter image description here


I first try to employ the NDSolve, but it seems that Mathematica can not handle the fourth boundary condition.


Therefore, I rewrite the code with finite difference method, but still have problem


Mr = 100; Mz = 10; Lr = 10; Lz = 1;
γ = 0.01;
α = 1;

κ = 1;
dr = Lr/Mr;
dz = Lz/dz;
dt = 0.1;
r[i_] := i*dr;
z[j_] := j*dz;


(*i.c.*)
u[i_, j_, 0] := 0;

(*b.c.*)
u[1, j_, k_] := u[2, j, k] + 2;
u[Mr, j_, k_] := u[Mr - 1, j, k];
u[i_, 1, k_] := u[i, 2, k];
u[i_, Mz, k_] :=
If[k == 1, 0,
1/dz^2 (dt dz γ u[i, -1 + Mz, -1 + k] +
dt α γ u[i, -1 + Mz, -1 + k]^2 +
dz^2 u[i, Mz, -1 + k] - dt dz γ u[i, Mz, -1 + k] -
2 dt α γ u[i, -1 + Mz, -1 + k] u[i, Mz, -1 + k] +

dt α γ u[i, Mz, -1 + k]^2)];

u[i_, j_, k_] :=
u[i, j, k] =
1/(dr^2 dz^2 i) (dt dz^2 i u[-1 + i, j, -1 + k] +
dr^2 dt i u[i, -1 + j, -1 + k] - dt dz^2 u[i, j, -1 + k] -
2 dr^2 dt i u[i, j, -1 + k] + dr^2 dz^2 i u[i, j, -1 + k] -
2 dt dz^2 i u[i, j, -1 + k] + dr^2 dt i u[i, 1 + j, -1 + k] +
dt dz^2 u[1 + i, j, -1 + k] + dt dz^2 i u[1 + i, j, -1 + k]);


u[1, Mz, 1]

However, I receive the following error message



$RecursionLimit::reclim: Recursion depth of 1024 exceeded. >>


$RecursionLimit::reclim: Recursion depth of 1024 exceeded. >>


$RecursionLimit::reclim: Recursion depth of 1024 exceeded. >>


General::stop: Further output of $RecursionLimit::reclim will be suppressed during this calculation. >>



The problem may be induced by the imposion of nonlinear and time-derivative and nonlinear boundary condition. Any idea about how to solve my problem? This boundary condition has bothered me for long time.





I re code the provided code as follows


Clear[fdd, pdetoode, tooderule]
fdd[{}, grid_, value_, order_] := value;
fdd[a__] := NDSolve`FiniteDifferenceDerivative@a;

pdetoode[funcvalue_List, rest__] :=
pdetoode[(Alternatives @@ Head /@ funcvalue) @@ funcvalue[[1]],
rest];
pdetoode[{func__}[var__], rest__] :=

pdetoode[Alternatives[func][var], rest];
pdetoode[rest__, grid_?VectorQ, o_Integer] :=
pdetoode[rest, {grid}, o];

pdetoode[func_[var__], time_, {grid : {__} ..}, o_Integer] :=
With[{pos = Position[{var}, time][[1, 1]]},
With[{bound = #[[{1, -1}]] & /@ {grid},
pat = Repeated[_, {pos - 1}],
spacevar = Alternatives @@ Delete[{var}, pos]},
With[{coordtoindex =

Function[coord,
MapThread[
Piecewise[{{1, # === #2[[1]]}, {-1, # === #2[[-1]]}},
All] &, {coord, bound}]]},
tooderule@
Flatten@{((u : func) |
Derivative[dx1 : pat, dt_, dx2___][(u : func)])[x1 : pat,
t_, x2___] :> (Sow@coordtoindex@{x1, x2};

fdd[{dx1, dx2}, {grid},

Outer[Derivative[dt][u@##]@t &, grid],
"DifferenceOrder" -> o]),
inde : spacevar :>
With[{i = Position[spacevar, inde][[1, 1]]},
Outer[Slot@i &, grid]]}]]];

tooderule[rule_][pde_List] := tooderule[rule] /@ pde;
tooderule[rule_]@Equal[a_, b_] :=
Equal[tooderule[rule][a - b], 0] //.
eqn : HoldPattern@Equal[_, _] :> Thread@eqn;

tooderule[rule_][expr_] := #[[Sequence @@ #2[[1, 1]]]] & @@
Reap[expr /. rule]

Clear@pdetoae;
pdetoae[funcvalue_List, rest__] :=
pdetoae[(Alternatives @@ Head /@ funcvalue) @@ funcvalue[[1]], rest];
pdetoae[{func__}[var__], rest__] :=
pdetoae[Alternatives[func][var], rest];

pdetoae[func_[var__], rest__] :=

Module[{t},
Function[
pde, #[pde /. {Derivative[d__][u : func][inde__] :>
Derivative[d, 0][u][inde, t], (u : func)[inde__] :>
u[inde, t]}] /. (u : func)[i__][t] :> u[i]] &@
pdetoode[func[var, t], t, rest]];
\[Gamma] = 100;
\[Alpha] = 0;
\[Kappa] = 1;
R = 10;

Z = 1;
eps = 10^-1;
tend = 1000;

eq = With[{u = u[r, Sqrt[\[Kappa]] z, t]},
Laplacian[u, {r, th, z}, "Cylindrical"] == D[u, t] /.
Sqrt[\[Kappa]] z -> z];

ic = u[r, z, 0] == 0;
bc = With[{u = u[r, z, t]}, {D[u, r] == -2/r /. r -> eps,

u == 0 /. r -> R, D[u, z] == 0 /. z -> 0, D[u, z] == 0 /. z -> Z}]

domain@r = {eps, R};
domain@z = {0, Z};
points@r = 50;
points@z = 50;
difforder = 2;
(grid@# = Array[# &, points@#, domain@#]) & /@ {r, z};

(*Definition of pdetoode isn't included in this post,please find it \

in the link above.*)
ptoofunc = pdetoode[u[r, z, t], t, grid /@ {r, z}, difforder];

delbothside = #[[2 ;; -2]] &;

ode = delbothside /@ delbothside@ptoofunc@eq;

odeic = delbothside /@ delbothside@ptoofunc@ic;
odebc = MapAt[delbothside, ptoofunc@bc, {{1}, {2}}];


sollst = NDSolveValue[{ode, odeic, odebc},
Outer[u, grid@r, grid@z] // Flatten, {t, 0, tend}];

sol = ListInterpolation[
Partition[Developer`ToPackedArray@#["ValuesOnGrid"] & /@ #,
points@z], {grid@r, grid@z, #[[1]]["Coordinates"][[1]]}] &@
sollst; // AbsoluteTiming

Manipulate[
Plot3D[sol[r, z, t], {r, eps, R}, {z, 0, Z},

PlotRange -> {-1, 10}], {t, 0, tend}]

The equation indicate that the upper and under boundary conditions are subjected to no-flow condition. And it can easily be solved and obtain an analytical solution.


To compare the analytical solution (or semi-analytical), the solution can be expressed as


Vi[n_, i_] := 
Vi[n, i] = (-1)^(i + n/2) Sum[
k^(n/2) (2 k)! /( (n/2 - k)! k! (k - 1)! (i - k)! (2 k -
i)! ), { k, Floor[ (i + 1)/2 ], Min[ i, n/2] } ] // N;
Stehfest[F_, s_, t_, n_: 16] :=
If[n > 16, Message[Stehfest::optimalterms, n];

If[ OddQ[n], Message[Stehfest::odd, n];
"Enter an even number of terms",
If[n > 32, Message[Stehfest::terms, n];
" Try a smaller value for n. Maximum allowable n is 32 ",
Log[2]/t Sum[ Vi[n, i]*F /. s -> i Log[2]/t , {i, 1, n} ] ]],
If[ OddQ[n], Message[Stehfest::odd, n];
"Enter an even number of terms",
If[n > 32, Message[Stehfest::terms, n];
" Try a smaller value for n. Maximum allowable n is 32.",
Log[2]/t Sum[

Vi[n, i]*F /. s -> i Log[2]/t , {i, 1, n} ] ]]] // N;
s0[r_, z_, t_] :=
NIntegrate[
Re[Stehfest[(
2 E^(-((Sqrt[a^2 + p] z)/
Sqrt[\[Kappa]])) (-E^((Sqrt[a^2 + p]/Sqrt[\[Kappa]]))
p \[Gamma] -
E^((Sqrt[a^2 + p] (1 + 2 z))/Sqrt[\[Kappa]]) p \[Gamma] +
E^((Sqrt[a^2 + p] z)/
Sqrt[\[Kappa]]) (p \[Gamma] - Sqrt[a^2 + p] Sqrt[\[Kappa]]) +

E^((Sqrt[a^2 + p] (2 + z))/
Sqrt[\[Kappa]]) (p \[Gamma] +
Sqrt[a^2 + p] Sqrt[\[Kappa]])))/(
p (a^2 +
p) ((1 + E^((2 Sqrt[a^2 + p])/
Sqrt[\[Kappa]])) p \[Gamma] + (-1 + E^((2 Sqrt[a^2 + p])/
Sqrt[\[Kappa]])) Sqrt[a^2 + p] Sqrt[\[Kappa]])), p, t, 6]]*
BesselJ[0, a (r)]*a, {a, 0, \[Infinity]},
Method -> {"LevinRule", "LevinFunctions" -> {BesselJ}},
MaxRecursion -> 40];


with \[Gamma] = 0; I however compare the numerical results and analytical one. It seems that the the numerical solution obtain a wrong result. The code and the plot of comparison are shown as follows


\[Gamma] = 0; TT1 = Table[{t, s0[0.9, 0.5, t]}, {t, 0.1, 1, 0.1}];
TT2 = Table[{t, s0[0.9, 0.5, t]}, {t, 1, 10, 1}];
TT3 = Table[{t, s0[0.9, 0.5, t]}, {t, 10, 100, 10}];
TT4 = Table[{t, s0[0.9, 0.5, t]}, {t, 100, 1000, 100}];
C0 = Join[TT1, TT2, TT3, TT4];
TT1 = Table[{t, sol[1, 0.5, t]}, {t, 0.1, 1, 0.1}];
TT2 = Table[{t, sol[1, 0.5, t]}, {t, 1, 10, 1}];
TT3 = Table[{t, sol[1, 0.5, t]}, {t, 10, 100, 10}];

TT4 = Table[{t, sol[1, 0.5, t]}, {t, 100, 1000, 100}];
Cn = Join[TT1, TT2, TT3, TT4];

enter image description here


The figure is u versus t and blue and yellow lines represent the value predicted by numerical and analytical solutions, respectively. I an trying to figure out what happen to the numerical method.




Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....