Skip to main content

matrix - Proof of the Dirac-$gamma$ matrices identity


Given the matrices


$\gamma_{k}=\begin{bmatrix} O & -i\sigma_{k}\\ +i\sigma_{k}& O \end{bmatrix}$



where $\sigma_{k}$ is the $k^{th}$ Pauli matrix


$\gamma_{4}=\begin{bmatrix} I^{2} &0 \\ 0 & -I^{2} \end{bmatrix}$


$\gamma_{5}=\gamma_{1}.\gamma_{2}.\gamma_{3}.\gamma_{4}$


The anticommutator rule is defined by $\left [ x,y \right ]=xy+yx$


Show that the anticommutator relation $\gamma_{u}.\gamma_{v}+\gamma_{v}.\gamma_{u}=2\delta _{u v}I$ is satisfied for all $u,v=1,2,3,4$ where $I$ is the $4 \times 4$ identity matrix.


What I have defined is


\[ScriptCapitalO] = {{0, 0}, {0, 0}};
Subscript[\[Gamma], 1] = {{\[ScriptCapitalO], -I PauliMatrix[1]},
{I PauliMatrix[1], \[ScriptCapitalO]}};


Subscript[\[Gamma], 2] = {{\[ScriptCapitalO], -I PauliMatrix[2]},
{I PauliMatrix[2], \[ScriptCapitalO]}};

Subscript[\[Gamma], 3] = {{\[ScriptCapitalO], -I PauliMatrix[3]},
{I PauliMatrix[3], \[ScriptCapitalO]}};

Subscript[\[Gamma], 4] = {{IdentityMatrix[2], \[ScriptCapitalO]},
{\[ScriptCapitalO], -IdentityMatrix[2]}};

Subscript[\[Gamma], 5] =

Subscript[\[Gamma], 1].Subscript[\[Gamma], 2].Subscript[\[Gamma],3].Subscript[\[Gamma], 4];

One way to do this would be to show the identity holds individually. But this would be tedious. Can someone help me with a more efficient and general way to this?



Answer



Define DiracMatrix:


DiracMatrix[k_] /; k == 1 || k == 2 || k == 3 := 
ArrayFlatten[{{0, - I PauliMatrix[k]}, {I PauliMatrix[k], 0}}]

DiracMatrix[4] := ArrayFlatten[{{ IdentityMatrix[2], 0}, {0, -IdentityMatrix[2]}}]


DiracMatrix[5] := Dot @@ Table[DiracMatrix[k], {k, 4}]

To prove the identity we could check e.g.


And @@ Flatten @ 
Table[ DiracMatrix[i].DiracMatrix[k] + DiracMatrix[k].DiracMatrix[i]
== 2 KroneckerDelta[i, k] IdentityMatrix[4], {i, 4}, {k, 4}]


True


sometimes one would prefer a visual test, something like e.g.


L[i_, k_] := DiracMatrix[i].DiracMatrix[k] + DiracMatrix[k].DiracMatrix[i] -
2 KroneckerDelta[i, k] IdentityMatrix[4]
Table[ L[i, k] // MatrixForm, {i, 4}, {k, 4}] // MatrixForm

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...