Skip to main content

How-to derive conical region in an arbitrary geometry?


Description


I have been working with derived geometric regions and ran into a problem when deriving RegionIntersection of a Cone with respect to a bounding Cuboid


Example 1


Module[
{

R1 = Cuboid[{0, 0, 0}, {5, 5, 5}],
R2 = Cone[{{0, 0, 0}, {5, 5, 5}}, 3]
},
Show[{
Graphics3D[{Opacity @ 0.05, R2}],
RegionPlot3D[R1, PlotStyle -> Directive[White, Opacity @ 0.3]],
RegionPlot3D[RegionIntersection[R2, R1]]
},
Boxed -> False]
]


Output 1


example no. 1


Example 2


Module[
{
R1 = Fold[RegionDifference,
Cuboid[{0, 0, 0}, {5, 5, 5}], {Cylinder[{{1, 1, 0}, {1, 1, 5}},
1], Cylinder[{{3, 3, 0}, {3, 3, 5}}, 1]}],
R2 = Cone[{{0, 0, 0}, {5, 5, 5}}, 3]

},
Show[{
Graphics3D @ {Opacity @ 0.05, Cone[{{0, 0, 0}, {5, 5, 5}}, 3]},
RegionPlot3D[R1, PlotStyle -> Directive[White, Opacity @ 0.3]],
RegionPlot3D[RegionIntersection[R1, R2]]
},
Boxed -> False]
]

Output 2



example 2


EDIT1 (Example of somewhat desired output using alternative solid geometry)


Code


Module[
{
module = Fold[RegionDifference, Cuboid[{0, 0, 0}, {5, 5, 5}], {Cylinder[{{1, 1, 0}, {1, 1, 5}}, 1], Cylinder[{{3, 3, 0}, {3, 3, 5}}, 1]}],
tetra = Tetrahedron[{{0, 2, 0}, {2, 0, 0}, {0, 0, 2}, {5, 5, 5}}]
},
Show[{
RegionPlot3D[module, PlotStyle -> Directive[White, Opacity @ 0.3]],

RegionPlot3D @ RegionIntersection[module, tetra]
}]
]

Output


alternative geometry


In the above examples, on both outputs I was expecting a filled Cone region with its base lining-up against the bounding Cuboid. However, the output left me puzzled and I was hoping someone could explain me if I am missing something and how I could achieve the desired output?



Answer



To make the tetrahedra solution give a better result, you need to increase the PlotPoints, like this:


Module[

{
module = Fold[
RegionDifference,
Cuboid[{0, 0, 0}, {5, 5, 5}],
{
Cylinder[{{1, 1, 0}, {1, 1, 5}}, 1],
Cylinder[{{3, 3, 0}, {3, 3, 5}}, 1]
}
],
tetra = Tetrahedron[{{0, 2, 0}, {2, 0, 0}, {0, 0, 2}, {5, 5, 5}}]

},
Show[
{
RegionPlot3D[
module,
PlotStyle -> Directive[White, Opacity@0.3]
],
RegionPlot3D[
RegionIntersection[module, tetra],
PlotPoints -> 100,

Mesh -> All
]
},
ImageSize -> Medium
]
]

Tetrahedron with 100 PlotPoints


And to get a good RegionPlot of the original code, you should discretize the region in the RegionPlot3D:


Module[

{
R1 = Cuboid[{0, 0, 0}, {5, 5, 5}],
R2 = Cone[{{0, 0, 0}, {5, 5, 5}}, 3]
},
Show[
{
Graphics3D[{Opacity@0.05, R2}],
RegionPlot3D[R1, PlotStyle -> Directive[White, Opacity@0.3]],
RegionPlot3D[
DiscretizeRegion[RegionIntersection[R2, R1], PrecisionGoal -> 10]

]
},
Boxed -> False
]
]

Discretized RegionIntersection


Note: the PrecisionGoal smooths the surface of the RegionIntersection object


I hope this helps. You may find many calculations struggle on the direct symbolic solution of 3D region intersections, in those cases try discretizing the region first (you can increase different precision options to DiscretizeRegion for better results).


Nia Knibbs Vaughan

Wolfram Research Technical Consultant


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...