Skip to main content

How-to derive conical region in an arbitrary geometry?


Description


I have been working with derived geometric regions and ran into a problem when deriving RegionIntersection of a Cone with respect to a bounding Cuboid


Example 1


Module[
{

R1 = Cuboid[{0, 0, 0}, {5, 5, 5}],
R2 = Cone[{{0, 0, 0}, {5, 5, 5}}, 3]
},
Show[{
Graphics3D[{Opacity @ 0.05, R2}],
RegionPlot3D[R1, PlotStyle -> Directive[White, Opacity @ 0.3]],
RegionPlot3D[RegionIntersection[R2, R1]]
},
Boxed -> False]
]


Output 1


example no. 1


Example 2


Module[
{
R1 = Fold[RegionDifference,
Cuboid[{0, 0, 0}, {5, 5, 5}], {Cylinder[{{1, 1, 0}, {1, 1, 5}},
1], Cylinder[{{3, 3, 0}, {3, 3, 5}}, 1]}],
R2 = Cone[{{0, 0, 0}, {5, 5, 5}}, 3]

},
Show[{
Graphics3D @ {Opacity @ 0.05, Cone[{{0, 0, 0}, {5, 5, 5}}, 3]},
RegionPlot3D[R1, PlotStyle -> Directive[White, Opacity @ 0.3]],
RegionPlot3D[RegionIntersection[R1, R2]]
},
Boxed -> False]
]

Output 2



example 2


EDIT1 (Example of somewhat desired output using alternative solid geometry)


Code


Module[
{
module = Fold[RegionDifference, Cuboid[{0, 0, 0}, {5, 5, 5}], {Cylinder[{{1, 1, 0}, {1, 1, 5}}, 1], Cylinder[{{3, 3, 0}, {3, 3, 5}}, 1]}],
tetra = Tetrahedron[{{0, 2, 0}, {2, 0, 0}, {0, 0, 2}, {5, 5, 5}}]
},
Show[{
RegionPlot3D[module, PlotStyle -> Directive[White, Opacity @ 0.3]],

RegionPlot3D @ RegionIntersection[module, tetra]
}]
]

Output


alternative geometry


In the above examples, on both outputs I was expecting a filled Cone region with its base lining-up against the bounding Cuboid. However, the output left me puzzled and I was hoping someone could explain me if I am missing something and how I could achieve the desired output?



Answer



To make the tetrahedra solution give a better result, you need to increase the PlotPoints, like this:


Module[

{
module = Fold[
RegionDifference,
Cuboid[{0, 0, 0}, {5, 5, 5}],
{
Cylinder[{{1, 1, 0}, {1, 1, 5}}, 1],
Cylinder[{{3, 3, 0}, {3, 3, 5}}, 1]
}
],
tetra = Tetrahedron[{{0, 2, 0}, {2, 0, 0}, {0, 0, 2}, {5, 5, 5}}]

},
Show[
{
RegionPlot3D[
module,
PlotStyle -> Directive[White, Opacity@0.3]
],
RegionPlot3D[
RegionIntersection[module, tetra],
PlotPoints -> 100,

Mesh -> All
]
},
ImageSize -> Medium
]
]

Tetrahedron with 100 PlotPoints


And to get a good RegionPlot of the original code, you should discretize the region in the RegionPlot3D:


Module[

{
R1 = Cuboid[{0, 0, 0}, {5, 5, 5}],
R2 = Cone[{{0, 0, 0}, {5, 5, 5}}, 3]
},
Show[
{
Graphics3D[{Opacity@0.05, R2}],
RegionPlot3D[R1, PlotStyle -> Directive[White, Opacity@0.3]],
RegionPlot3D[
DiscretizeRegion[RegionIntersection[R2, R1], PrecisionGoal -> 10]

]
},
Boxed -> False
]
]

Discretized RegionIntersection


Note: the PrecisionGoal smooths the surface of the RegionIntersection object


I hope this helps. You may find many calculations struggle on the direct symbolic solution of 3D region intersections, in those cases try discretizing the region first (you can increase different precision options to DiscretizeRegion for better results).


Nia Knibbs Vaughan

Wolfram Research Technical Consultant


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...