Skip to main content

algebraic manipulation - Generating an efficient way to compute einsum?


Given an einsum like below, how could I generate an efficient computation graph for it?


XikMijMklXjl


The indices range from 1 to d and the goal is to minimize computation time assuming d is large. IE, prefer O(dk) to O(dk+1). For the sum above, it can be computed as follows:


Akj=XikMijBkj=MklXjlc=AkjBkj


You could specify this solution in terms of indices occurring in the expression


A={ik,ij}
B={kl,jl}
c={A,B}


More compactly, the problem and solution can be encoded as follows:


input: {ik, ij, kl, jl}
output: {{ik, ij}, {kl, jl}}

This is likely to be an NP-complete problem, but there are probably heuristics to find near-optimal solution most of the time.


Edit: the most important case for practical applications was when result can be expressed in terms matrices, which can be done using Carl Woll's package in the answer. Specifically, it seems to work to get efficient matrix expression for the following einsum


Xik(M(1)ijM(2)kl+M(3)ikM(4)jl+M(5)ilM(6)jk)Xjl


as


tr(M2XM1X)+tr(M3X)tr(M4X)+tr(M6XM5X)



This was computed using the answer below as


PacletInstall[
"TensorSimplify",
"Site" -> "http://raw.githubusercontent.com/carlwoll/TensorSimplify/master"
]

<< TensorSimplify`
einsum[in_List -> out_, arrays__] :=
Module[{res = isum[in -> out, {arrays}]}, res /; res =!= $Failed];


isum[in_List -> out_, arrays_List] :=
Catch@Module[{indices, contracted, uncontracted, contractions,
transpose},
If[Length[in] != Length[arrays],
Message[einsum::length, Length[in], Length[arrays]];
Throw[$Failed]];
MapThread[
If[IntegerQ@TensorRank[#1] && Length[#1] != TensorRank[#2],
Message[einsum::shape, #1, #2];
Throw[$
Failed]] &, {in, arrays}];

indices = Tally[Flatten[in, 1]];
If[DeleteCases[indices, {_, 1 | 2}] =!= {},
Message[einsum::repeat,
Cases[indices, {x_, Except[1 | 2]} :> x]];
Throw[$Failed]];
uncontracted = Cases[indices, {x_, 1} :> x];
If[Sort[uncontracted] =!= Sort[out],
Message[einsum::output, uncontracted, out];
Throw[$
Failed]];
contracted = Cases[indices, {x_, 2} :> x];

contractions = Flatten[Position[Flatten[in, 1], #]] & /@ contracted;
transpose = FindPermutation[uncontracted, out];
Activate@
TensorTranspose[
TensorContract[Inactive[TensorProduct] @@ arrays, contractions],
transpose]]

einsum::length =
"Number of index specifications (`1`) does not match the number of \
arrays (`2`)";

einsum::shape =
"Index specification `1` does not match the array depth of `2`";
einsum::repeat =
"Index specifications `1` are repeated more than twice";
einsum::output =
"The uncontracted indices don't match the desired output";

$Assumptions = (X | M | M1 | M2 | M3 | M4 | M5 | M6) \[Element]
Matrices[{d, d}];
FromTensor@einsum[{{1, 3}, {1, 2}, {3, 4}, {2, 4}} -> {}, X, M1, M2, X]

FromTensor@
TensorReduce@
einsum[{{1, 3}, {2, 4}, {1, 3}, {2, 4}} -> {}, M3, M4, X, X]
FromTensor@
TensorReduce@
einsum[{{1, 4}, {2, 3}, {1, 3}, {2, 4}} -> {}, M5, M6, X, X]

Answer



Maybe the following will be useful for you.


You can combine my FromTensor function (part of my TensorSimplify paclet) with my einsum function to convert your einsum representation into Tr + Dot.


$Assumptions = (X|M) ∈ Matrices[{d,d}];


FromTensor @ einsum[{{1,3}, {1,2}, {3,4}, {2,4}}->{}, X, M, M, X]


Tr[Transpose[M].Transpose[X].M.X]



Hopefully the loading instructions for these functions is clear from the above links. If not, I can add them here again.


Addendum


If your tensor has disconnected pieces, then FromTensor doesn't currently work. A simple fix is to include TensorReduce. From the comments in the examples (I think I fixed a typo in the second example):


$Assumptions = (X | M) ∈ Matrices[{d,d}];


FromTensor @ TensorReduce @ einsum[{{1, 3}, {2, 4}, {1, 3}} -> {2, 4}, M, M, X]
FromTensor @ TensorReduce @ einsum[{{1, 3}, {2, 4}, {1, 3}, {2, 4}} -> {}, M, M, X, X]


M Tr[Transpose[M].X]


Tr[Transpose[M].X]^2



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]