Skip to main content

Solving a system of non-linear equations and obtaining a phase portrait



Still a newbie in Mathematica, I used streamplot function to generate a bunch of streamlines for the non-linear system below. How do I solve this system of equations numerically and generate the appropriate solution curves?


y'[t]=m[x,y,c,k]  

x'[t]=n[x,y,c]

Where


m[x_, y_, c_, k_] := (((y - 1)^2 - x^2)/((y - 1)^2 + x^2)*((
1 - Exp[-(((y - 1)^2 + x^2)/c)])/(((y - 1)^2 + x^2)/
c))) - (ExpIntegralE[1, ((y - 1)^2 + x^2)/c]) + k
n[x_, y_, c_] := -((2 (x - 1) (y - 1))/((y - 1)^2 + x^2))*((1 - Exp[-(((y - 1)^2 + x^2)/c)])/(((y - 1)^2 + x^2)/c)).

c ranges from 0.01 to 100, and k ranges from 0 to 1.


Thank you in advance!




Answer



eq1 = x'[t] == -((2 (x[t] - 1) (y[t] - 1))/((y[t] - 1)^2 + x[t]^2))*((1 - 
Exp[-(((y[t] - 1)^2 + x[t]^2)/c)])/(((y[t] - 1)^2 + x[t]^2)/c));
eq2 = y'[t] == (((y[t] - 1)^2 - x[t]^2)/((y[t] - 1)^2 + x[t]^2)*((1 -
Exp[-(((y[t] - 1)^2 + x[t]^2)/c)])/(((y[t] - 1)^2 + x[t]^2)/
c))) - (ExpIntegralE[1, ((y[t] - 1)^2 + x[t]^2)/c]) + k;

c = 3; k = 0.5;

sol[x0_?NumericQ] := First@NDSolve[{eq1, eq2, x[0] == x0, y[0] == x0}, {x, y}, {t, 0, 200}]


pp = ParametricPlot[Evaluate[{x[t], y[t]} /. sol[#] & /@ Range[0.3, 1, 0.2]], {t, 0,200}];

sp = StreamPlot[{-((2 (x - 1) (y - 1))/((y - 1)^2 + x^2))*((1 -
Exp[-(((y - 1)^2 + x^2)/c)])/(((y - 1)^2 + x^2)/
c)), (((y - 1)^2 - x^2)/((y - 1)^2 +
x^2)*((1 - Exp[-(((y - 1)^2 + x^2)/c)])/(((y - 1)^2 + x^2)/
c))) - (ExpIntegralE[1, ((y - 1)^2 + x^2)/c]) + k}, {x, -5, 1}, {y, 0, 2}];

Show[pp, sp]


enter image description here


sol1 = ParametricNDSolveValue[{eq1, eq2, x[0] == x0, y[0] == y0}, {x, y}, {t, -100, 100}, 
{x0, y0}];

points = Join[Table[{-2, y}, {y, -5, 5, 0.1}], Table[{2, y}, {y, -5, 5, 0.1}]];

ParametricPlot[sol1 @@@ points//Evaluate, {t, -100, 100}, PlotRange -> {{-5, 5}, {-5, 5}}]

enter image description here



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

plotting - Magnifying Glass on a Plot

Although there is a trick in TEX magnifying glass but I want to know is there any function to magnifying glass on a plot with Mathematica ? For example for a function as Sin[x] and at x=Pi/6 Below, this is just a picture desired from the cited site. the image got huge unfortunately I don't know how can I change the size of an image here! Answer Insetting a magnified part of the original Plot A) by adding a new Plot of the specified range xPos = Pi/6; range = 0.2; f = Sin; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; Plot[f[x], {x, 0, 5}, Epilog -> {Transparent, EdgeForm[Thick], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], {4., 0.5}]}, ImageSize -> 700] B) by adding a new Plot within a Circle mf = RegionMember[Disk[{xPos, f[xPos]}, {range, range/GoldenRatio}]] Show...