Skip to main content

numerical integration - Solution of a singular integral equation using interpolation and truncated methods


I am trying to code the following integral equation to find the solution numerically using Mathematica.


First we define the following functions:



phi[x_]:=Piecewise[{{1, 0 < x < 1}}, 0]

psi1[x_] := (phi[2 x-1] - phi[2 x]);

psijk[x_, j_, k_] := (Sqrt[2])^j psi1[-2^j x - k]

f[x_] := 1/1155 (112 (-1 + x)^(3/4) + x (144 (-1 + x)^(3/4) + x (1155 + 256 (-1 + x)^(3/4) - 1280 x^(3/4) - (1155 + 512 (-1 + x)^(3/4)) x + 1024 x^(7/4))));

exactsoln[x_] := x^2 (1 - x);


I am trying to solve the following integral equation for u (x) (numerically). where


u[x] + Integrate[(x - t)^(-1/4)*u[t], {t, 0, x}] - 
Integrate[(x - t)^(-3/4)*u[t], {t, 0, 1}] = f[x];

where f[x] is defined as above. Here is the numerical scheme. The approximated solution \approx[x] which can be written as


approxsoln[x_, n_] := 
Sum[c[j, k]*psijk[x, j, k], {j, 0, n}, {k, -2^n, 2^n - 1}]

Then, we will end up by


Sum[c[j, k]*(psijk[x, j, k] - 

Integrate[(x - t)^(-1/4)* psijk[t, j, k], {t, 0, x}] -
Integrate[(x - t)^(-1/4)* psijk[t, j, k], {t, 0, 1}]), {j, 0, n}, {k, -2^n, 2^n - 1}];

I think it is worth to try for n=10 first.



Answer



The numerical method I suggested here also works for this case.It uses expression describing the integral Integrate[(x - t)^(-1/4),t]


f[x_] := 1/
1155 (112 (-1 + x)^(3/4) +
x (144 (-1 + x)^(3/4) +
x (1155 + 256 (-1 + x)^(3/4) -

1280 x^(3/4) - (1155 + 512 (-1 + x)^(3/4)) x +
1024 x^(7/4))));
ker[t_, x_] := -(4/3) (-t + x)^(3/4)

np = 101; points = fun = Table[Null, {np}];
Table[points[[i]] = i/np, {i, np}];
sol = Unique[] & /@ points;
Do[fun[[i]] = f[t] /. t -> points[[i]], {i, np}]; sol1 =
sol /. First@
Solve[Table[

sol[[j]] -
Sum[.5*(sol[[i]] +
sol[[i + 1]])*(ker[points[[i + 1]], points[[j]]] -
ker[points[[i]], points[[j]]]), {i, 1, np - 1}] -
Sum[.5*(sol[[i]] +
sol[[i + 1]])*(ker[points[[i + 1]], points[[j]]] -
ker[points[[i]], points[[j]]])*If[i >= j, 0, 1], {i, 1,
np - 1}] == fun[[j]], {j, 1, np}], sol];
u = Transpose[{points, Re[sol1]}];
Show[Plot[x^2*(1 - x), {x, 0, 1}, AxesLabel -> {"x", "u"},

PlotStyle -> Blue], ListPlot[u, PlotStyle -> Orange]]

fig1


If we use the algorithm that @Mutaz offers, then a solution for n = 2 (for n = 5, a supercomputer is needed) looks like that


phi[x_] := Piecewise[{{1, 0 <= x < 1}}, 0]
psi1[x_] := (phi[2 x] - phi[2 x - 1]);
psijk[x_, j_, k_] :=
Piecewise[{{(Sqrt[2])^j psi1[2^j x - k],
0 <= j}, {2^j psi1[2^j (x - k)], j < 0}}]
f[x_] := 1/

1155 (112 (-1 + x)^(3/4) +
x (144 (-1 + x)^(3/4) +
x (1155 + 256 (-1 + x)^(3/4) -
1280 x^(3/4) - (1155 + 512 (-1 + x)^(3/4)) x +
1024 x^(7/4))));
exactsoln[x_] := x^2 (1 - x);
(*u[x]-Integrate[(x-t)^(-1/4)*u[t],{t,0,x}]-Integrate[(x-t)^(-1/4)*u[\
t],{t,0,1}]=f[x];*)
sol[x_, n_] :=


Sum[c[j, k]*psijk[x, j, k], {j, -n, n}, {k, -2^n, 2^n - 1}]
n = 2; var =
Flatten[Table[c[j, k], {j, -n, n, 1}, {k, -2^n, 2^n - 1, 1}]];np =
Length[var]; points =
Table[Null, {np}];
Table[points[[i]] = i/np, {i, np}];
eq = ParallelTable[
sol[points[[i]], n] -
Integrate[(points[[i]] - t)^(-1/4)*sol[t, n], {t, 0,
points[[i]]}] -

Integrate[(points[[i]] - t)^(-1/4)*sol[t, n], {t, 0, 1}] ==
f[points[[i]]], {i, 1, np}];
{b, m} = N[CoefficientArrays[eq, var]];
sol1 = LinearSolve[m, -b];
u = Sum[c[j, k]*psijk[x, j, k], {j, -n, n}, {k, -2^n, 2^n - 1}] /.
Table[var[[i]] -> sol1[[i]], {i, Length[var]}];
Show[Plot[x^2*(1 - x), {x, 0, 1}, AxesLabel -> {"x", "u"},
PlotStyle -> Blue, PlotLabel -> Row[{"n = ", n}]],
Plot[Re[u], {x, 0, 1}, PlotStyle -> Orange]]


fig2


I will show another method that is in the middle position between what Roman suggested and what the author wants. This method is very accurate.Figure 3 on the right shows the difference between the exact solution and the numerical one with 'n = 3'. This difference is of the order of $10^{-16}$.


psijk[x_, j_] := x^j
f[x_] := 1/
1155 (112 (-1 + x)^(3/4) +
x (144 (-1 + x)^(3/4) +
x (1155 + 256 (-1 + x)^(3/4) -
1280 x^(3/4) - (1155 + 512 (-1 + x)^(3/4)) x +
1024 x^(7/4))));
exactsoln[x_] := x^2 (1 - x);

(*u[x]-Integrate[(x-t)^(-1/4)*u[t],{t,0,x}]-Integrate[(x-t)^(-1/4)*u[\
t],{t,0,1}]=f[x];*)

sol[x_, n_] := Sum[c[j]*psijk[x, j], {j, 0, n}]

n = 3; var = Flatten[Table[c[j], {j, 0, n, 1}]]; np =
Length[var]; points = Table[Null, {np}];
Table[points[[i]] = i/np, {i, np}];
eq = ParallelTable[
sol[points[[i]], n] -

Integrate[(points[[i]] - t)^(-1/4)*sol[t, n], {t, 0,
points[[i]]}] -
Integrate[(points[[i]] - t)^(-1/4)*sol[t, n], {t, 0, 1}] ==
f[points[[i]]], {i, 1, np}]; // AbsoluteTiming

{b, m} = N[CoefficientArrays[eq, var]];
sol1 = LinearSolve[m, -b];


u = Sum[c[j]*psijk[x, j], {j, 0, n}] /.

Table[var[[i]] -> sol1[[i]], {i, Length[var]}];
Show[Plot[x^2*(1 - x), {x, 0, 1}, AxesLabel -> {"x", "u"},
PlotStyle -> Blue, PlotLabel -> Row[{"n = ", n}]],
Plot[Re[u], {x, 0, 1}, PlotStyle -> Orange]]
Plot[x^2*(1 - x) - Re[u], {x, 0, 1}, AxesLabel -> {"x", "\[Delta]u"},
PlotStyle -> Blue, PlotLabel -> Row[{"n = ", n}]]

fig3


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...