Skip to main content

list manipulation - Is there a faster way to create a matrix of indices from ragged data?


I have data that is given as a list of ordered pairs mixed with scalars. The pairs can contain infinite bounds. My goal is to convert the data into an index used in future computations.


data = {{1, ∞}, {-∞, 2}, 3, {2, 2}, {2, 3}};

This gives me all of the unique values present in data.


udata = Sort[DeleteDuplicates[Flatten@data], Less]

==> {-∞, 1, 2, 3, ∞}

Now I use Dispatch to create replacement rules based on the unique values.



dsptch = Dispatch[Thread[udata -> Range[Length[udata]]]];

Finally I replace the values with their indices and expand scalars a such that they are also pairs {a,a}. This results in a matrix of indices which is what I'm after.


Replace[data /. dsptch, a_Integer :> {a, a}, 1]

==> {{2, 5}, {1, 3}, {4, 4}, {3, 3}, {3, 4}}

NOTES:





  1. The number of unique values is generally small compared to the length of data but this doesn't have to be the case.




  2. Any real numbers are possible. The data I've shown simply gives a sense of the structural possibilities.




Question: Is there a way to create the final matrix of indices that is much faster than what I'm doing here?


Edit: To test the how potential solutions scale I recommend using the following data. It is fairly representative of a true-to-life case.


inf = {#, ∞} & /@ RandomChoice[Range[1000], 3*10^5];
neginf = {-∞, #} & /@ RandomChoice[Range[1000], 10^5];

int = Sort /@ RandomChoice[Range[1000], {10^5, 2}];
num = RandomChoice[Range[1000], 5*10^5];

testData = RandomSample[Join[inf, neginf, int, num]];

Answer



A modest improvement when you replace Replace[...] with Transpose@Thread:


 (udata = Sort[DeleteDuplicates[Flatten@testData], Less]; 
dsptch = Dispatch[Thread[udata -> Range[Length[udata]]]];
out1 = Replace[testData /. dsptch, a_Integer :> {a, a}, 1];) // AbsoluteTiming
(* {2.1282128, Null} *)


(udata = Sort[DeleteDuplicates[Flatten@testData], Less];
dsptch = Dispatch[Thread[udata -> Range[Length[udata]]]];
out2 = Transpose@Thread[testData /. dsptch];) // AbsoluteTiming
(* {1.9421942, Null} *)
out1==out2
(* True *)

Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...