Skip to main content

Using function with multiple definitions in Manipulate


I'm trying to use Manipulate to visually try out different values of lambda in a Box-Cox transformation. I've created a boxcox function with two definitions to deal with both the normal case and the case when lambda is 0:


boxcox[data_, 0] := Log[data]
boxcox[data_, l_] := (data^l - 1)/l

Then I use this function inside Manipulate but I keep getting tons of errors. It looks like Manipulate is only using the general definition and starts complaining about dividing by zero.


Manipulate[
pdata = Partition[boxcox[data, u], 12];
ranges = Max[#] - Min[#] & /@ pdata;

means = Mean[#] & /@ pdata;
mrdata = Transpose[{means, ranges}];
mrlm = LinearModelFit[mrdata, x, x];
Show[
ListPlot[mrdata, Axes -> False, Frame -> True,
AxesOrigin -> {Automatic, 0}],
Plot[mrlm[x], {x, Min[means], Max[means]}]
],
{u, 0.00, 1.00}
]


Here is the data I'm using in case it matters:


data = {154., 96., 73., 49., 36., 59., 95., 169., 210., 278., 298., 245., \
200., 118., 90., 79., 78., 91., 167., 169., 289., 347., 375., 203., \
223., 104., 107., 85., 75., 99., 135., 211., 335., 460., 488., 326., \
346., 261., 224., 141., 148., 145., 223., 272., 445., 560., 612., \
467., 518., 404., 300., 210., 196., 186., 247., 343., 464., 680., \
711., 610., 613., 392., 273., 322., 189., 257., 324., 404., 677., \
858., 895., 664., 628., 308., 324., 248., 272.}

Answer




As already explained: MatchQ[0, 0.] is False.


Generally, I suggest using:


boxcox[data_, x_ /; x == 0] := Log[data]

This works even for expression that are not expressly 0 or 0., e.g.:


MatchQ[E^(I Pi/4) - (-1)^(1/4), x_ /; x == 0]


True


It also works in cases like this:


MatchQ[0.0000000000000000000, x_ /; x == 0]


True

Compare:


MatchQ[0.0000000000000000000, 0 | 0.]



False

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...