I'm trying to use Manipulate
to visually try out different values of lambda in a Box-Cox transformation. I've created a boxcox
function with two definitions to deal with both the normal case and the case when lambda is 0:
boxcox[data_, 0] := Log[data]
boxcox[data_, l_] := (data^l - 1)/l
Then I use this function inside Manipulate
but I keep getting tons of errors. It looks like Manipulate is only using the general definition and starts complaining about dividing by zero.
Manipulate[
pdata = Partition[boxcox[data, u], 12];
ranges = Max[#] - Min[#] & /@ pdata;
means = Mean[#] & /@ pdata;
mrdata = Transpose[{means, ranges}];
mrlm = LinearModelFit[mrdata, x, x];
Show[
ListPlot[mrdata, Axes -> False, Frame -> True,
AxesOrigin -> {Automatic, 0}],
Plot[mrlm[x], {x, Min[means], Max[means]}]
],
{u, 0.00, 1.00}
]
Here is the data I'm using in case it matters:
data = {154., 96., 73., 49., 36., 59., 95., 169., 210., 278., 298., 245., \
200., 118., 90., 79., 78., 91., 167., 169., 289., 347., 375., 203., \
223., 104., 107., 85., 75., 99., 135., 211., 335., 460., 488., 326., \
346., 261., 224., 141., 148., 145., 223., 272., 445., 560., 612., \
467., 518., 404., 300., 210., 196., 186., 247., 343., 464., 680., \
711., 610., 613., 392., 273., 322., 189., 257., 324., 404., 677., \
858., 895., 664., 628., 308., 324., 248., 272.}
Answer
As already explained: MatchQ[0, 0.]
is False
.
Generally, I suggest using:
boxcox[data_, x_ /; x == 0] := Log[data]
This works even for expression that are not expressly 0
or 0.
, e.g.:
MatchQ[E^(I Pi/4) - (-1)^(1/4), x_ /; x == 0]
True
It also works in cases like this:
MatchQ[0.0000000000000000000, x_ /; x == 0]
True
Compare:
MatchQ[0.0000000000000000000, 0 | 0.]
False
Comments
Post a Comment