Skip to main content

dataset - Learning Resources for Data Science in the Wolfram Language


I'm delivering an upcoming course on Data Science with the programming/analysis done predominantly in the Wolfram Language. I created the following table to leverage students' familiarity with Lists by way of introducing Associations by way of introducing Datasets. Juxtaposing the various invocations one can't help but be struck with the foresight or "naturalness" of the original language design and subsequent integrations - (IMO an extraterrestrial would be hard-pressed to predict the chronology of sequentially added features, and in particular, to note that all three didn't emerge simultaneously).


My sense is that programming expertise in the Wolfram Language starts with an awareness of its existing (or "likely") functionality followed by inculcating and memorising its basic functional forms. While the documentation is essential for understanding all the details and an overall coherency, for quick reference/comparison/contrast, I think cheatsheets could be more commonly deployed (with no doubt improved visual design - the code follows which could potentially be improved/combined with other users' cheatsheets into a larger, more powerful "Demonstration"?)


At any rate, while an introduction involves becoming familiar with the basic syntax and manipulating structured datasets, the next stage involves applying these to some real-life examples. While there are good texts/datasets available (e.g. Luís Torgo's Data Mining with R: Learning with Case Studies) I'm wondering if anyone has found useful, available datasets from a variety of contexts (health, business, economics, ecology, physics, learning analytics) that might be particularly suitable for showcasing some of the benefits of data science in the Wolfram Language (this might be due to their size, unusual analysis, parallelizability, integration with curated data etc).



SetAttributes[{IOCells, DefCells, InsertIOCells, InsertDefCells}, 
HoldAll];



DefCells[Set[lhs_, rhs_]] := Row[{
ExpressionCell[Defer@lhs, "Input", ShowStringCharacters -> True,
FontSize -> 16],
ExpressionCell[" = ", ShowStringCharacters -> False,
FontSize -> 16],
ExpressionCell[lhs = rhs, "Input", ShowStringCharacters -> True,
FontSize -> 16]}];

(* Need to split in this way since a Defer wrapper seems to produce \

unexpected formatting - compare:
ExpressionCell[Defer[lhs=<|"a"\[Rule]8,"b"\[Rule]9,"c"\[Rule]10|>],\
"Input"]
ExpressionCell[Defer[lhs=\[LeftAngleBracket]"a"\[Rule]8,"b"\[Rule]9,\
"c"\[Rule]10\[RightAngleBracket]],"Input"]
*)

DefCells[R : Set[dataset, Dataset[{_}]]] := (R; Row[{
ExpressionCell[Defer@dataset, "Input",
ShowStringCharacters -> True, FontSize -> 16],

ExpressionCell[" = ", ShowStringCharacters -> False,
FontSize -> 16],
ExpressionCell["Dataset"[HoldForm[{assoc}]], "Input",
ShowStringCharacters -> False, FontSize -> 16]}]);

IOCells[expr_] /; !
FreeQ[Hold@expr,
Histogram | ListPlot | ListLinePlot | BarChart3D | BarChart |
PieChart | SmoothHistogram] := Grid[{
{ExpressionCell[Defer@expr, "Input",

ShowStringCharacters -> True]},
{ExpressionCell[expr, "Output", Magnification -> 0.41]}
}, Frame -> True, Alignment -> Left,
Background -> {None, {1 -> GrayLevel[.9], 2 -> White}}];


IOCells[expr_] := Grid[{
{ExpressionCell[Defer@expr, "Input",
ShowStringCharacters -> True]},
{ExpressionCell[expr, "Output"]}

}, Frame -> True, Alignment -> Left,
Background -> {None, {1 -> GrayLevel[.9], 2 -> White}}];

(* For the same reason above need a specific definition when <| |> \
notation is in input *)

IOCells[R : KeySelect[assoc_, assoc2_]] := With[
{t = ToExpression@ToBoxes[assoc2]}, Grid[{
{ExpressionCell[HoldForm@KeySelect[assoc, t], "Input",
ShowStringCharacters -> True]},

{ExpressionCell[ReleaseHold@R, "Output"]}
}, Frame -> True, Alignment -> Left,
Background -> {None, {1 -> GrayLevel[.9], 2 -> White}}]];

IOCells[R : Dataset[expr_][op_]] := Grid[{
{ExpressionCell["Dataset"[HoldForm@assoc][op], "Input",
ShowStringCharacters -> False]},
{ExpressionCell[ReleaseHold@R, "Output"]}
}, Frame -> True, Alignment -> Left,
Background -> {None, {1 -> GrayLevel[.9], 2 -> White}}];


(* Since Dataset outputs as grid in the input - means copying \
expression from the grid and evaluating won't work *)


InsertDefCells[defs_List] :=
ReleaseHold@With[{t = Hold@defs}, Map[DefCells, t, {2}]];
InsertIOCells[exprLs_] :=
Sequence @@
Map[Row,

ReleaseHold@With[{t = Hold@exprLs}, Map[IOCells, t, {4}]], {2}];

ColumnHeadStyle[cheads_List] :=
ExpressionCell[#, Style[#, {Bold, 18}],
ShowStringCharacters -> False] & /@ cheads;


Block[{$PlotTheme = "Minimal"}, Grid[{
{"List", "Association", "Dataset"} // ColumnHeadStyle,
{ls = {7, 8, 9}, assoc = <| "a" -> 7, b -> 8, "c" -> 9 |>,

dataset = Dataset[{assoc}]} // InsertDefCells,
{
{{ls[[All]]}, {Values[assoc], Keys[assoc], Normal[assoc],
Lookup[assoc, "b", "No-b"]}, {dataset[1, Values],
dataset[1, Keys]}},
{{(Query@1)[ls], ls[[1]], ls[[2]]}, {assoc[["a"]], assoc["a"],
assoc[[Key@b]], assoc@Key@b,
Query["a"][assoc]}, {Query[1, Key["a"]][dataset],
dataset[1, Key["a"]]}},
{{ls[[3]], ls[[-1]]}, {assoc[[3]], assoc[[-1]], assoc[a],

assoc["b"]}, {dataset[1, 3], dataset[1, -1],
dataset[1, Key["d"]]}},
{{ls[[1 ;; 3]], ls[[1 ;; 3 ;; 2]], Take[ls, {1, 3}],
Query[Take[{1, 3}]][ls]}, {assoc[[1 ;; 3]],
assoc[[1 ;; 3 ;; 2]], Take[assoc, {1, 3}],
Take[assoc, {1, 3, 2}],
Query[1 ;; 3][assoc]}, {dataset[1, 1 ;; 3],
Query[1, 1 ;; 3][dataset]}},
{{Query[{1, 3}][ls], ls[[{1, 3}]]}, {Query[{1, 3}][assoc],
assoc[[{1, 3}]], assoc[[{"a", "c"}]],

KeyTake[assoc, {"a", "c"}]}, {dataset[1, {1, 3}],
dataset[1, {"a", "c"}]}},
{{Cases[ls, _?OddQ], Cases[_?OddQ][ls]}, {Cases[assoc, _?OddQ],
Cases[_?OddQ][assoc]}, {dataset[1, Cases[_?OddQ]]}},
{{Query[Select[OddQ]][assoc], Select[ls, OddQ],
SelectFirst[ls, OddQ]}, {Select[assoc, OddQ],
Select[OddQ][assoc],
SelectFirst[assoc, OddQ]}, {dataset[1, Select[OddQ]],
dataset[1, SelectFirst[OddQ]]}},
{{Position[ls, _?OddQ],

FirstPosition[ls, _?OddQ]}, {Position[assoc, _?OddQ],
Position[_?OddQ][assoc],
FirstPosition[assoc, _?OddQ]}, {dataset[1, Position[_?OddQ]],
dataset[1, FirstPosition[_?OddQ]]}},
{{PositionIndex[ls],
Query[PositionIndex][ls]}, {PositionIndex[assoc],
Query[PositionIndex][assoc]}, {dataset[1, PositionIndex]}},
{{Select[Keys@assoc, MemberQ[{"a", "c"}, #] &]}, {KeySelect[
assoc, MemberQ[{"a", "c"}, #] &],
KeySelect[assoc, <| "a" -> True, "c" -> True |>]}, {dataset[1,

KeySelect[(# == "a" \[Or] # == "c") &]]}},
{{f[ls[[3]]], Query[3, f][ls]}, {f[assoc[["c"]]],
Query["c", f][assoc]}, {dataset[1, "c", f],
dataset[1, 3, f]}},
{{f /@ ls, Map[f][ls], Query[Map[f]][ls]}, {f /@ assoc,
Map[f][assoc]}, {dataset[1, Map@f], dataset[1, All, f]}},
{{MapIndexed[f, ls], MapIndexed[f][ls]}, {MapIndexed[f, assoc],
MapIndexed[f][assoc]}, {dataset[1, MapIndexed[f]]}},
{{MapAt[f, ls, 2], MapAt[f, 2][ls]}, {MapAt[f, assoc, 2],
MapAt[f, 2][assoc],

MapAt[f, Key[b]][assoc]}, {dataset[1, MapAt[f, Key@b]]}},
{{MapAt[f, Normal@assoc, {All, 1}]}, {KeyMap[f, assoc],
KeyMap[f][assoc]}, {dataset[1, KeyMap[f]]}},
{{Reverse /@ Normal@assoc,
Association[f /@ Normal@assoc]}, {AssociationMap[Reverse,
assoc], AssociationMap[f, assoc]}, {dataset[1,
AssociationMap@Reverse], dataset[1, AssociationMap[f]]}},
{{Sort@ls, Sort[ls, Greater],
Query[Sort[#1, Greater] &][ls]}, {Sort@assoc,
Sort[assoc, Greater],

Query[Sort[#1, Greater] &][assoc]}, {dataset[1, Sort],
dataset[1, Sort[#, Greater] &]}},
{{Total[ls]}, {Total[assoc], Query[Total][assoc],
Query[Values /* Total][assoc]}, {dataset[1, Total],
dataset[1, All /* Total], dataset[1, Total@*Values]}},
{{Through[{Min, Max, Total, Variance, Median}@
ls]}, {Query[{Min, Max, Total, Variance, Median}][
assoc]}, {dataset[1, {Min, Max, Total, Variance, Median}]}},
{{Through[{Histogram, BarChart, SmoothHistogram, PieChart,
ListLinePlot[#, Filling -> Axis] &}@ls]},

{Query[{Histogram, BarChart, SmoothHistogram, PieChart,
ListLinePlot[#1, Filling -> Axis] &}][
assoc]}, {dataset[
1, {Histogram, BarChart, SmoothHistogram, PieChart,
ListLinePlot[#1, Filling -> Axis] &}] // Normal}},
{{Thread[Keys[assoc] -> ls]}, {AssociationThread[
Keys[assoc] -> ls],
AssociationThread[Keys[assoc],
ls]}, {dataset[
1, {AssociationThread[Keys@#,

Values@#] &, (Keys@# -> Values@#) & /*
AssociationThread}] // Normal}},
{{Thread[Keys[assoc] -> f /@ Keys[assoc]]}, {AssociationMap[f,
Keys[assoc]],
Query[AssociationMap[f]@*Keys][assoc]}, {dataset[1,
Keys /* AssociationMap[f]]}},
{{(f[#1, #2, #3] &)[Sequence @@ ls]}, {(f[#a, #1[Key[b]], #c] &)[
assoc], (f[#1["a"], #1[Key[b]], #1["c"]] &)[assoc]}, {dataset[
1, All /* (f[#a, #1[Key[b]], #c] &)],
dataset[1, (Apply@f)@*Catenate]}},

{{(f[##1] &)[Sequence @@ ls], (f[##2] &)[
Sequence @@ ls]}, {((f[##] &)[Sequence @@ Values@#] &)[
assoc]}, {dataset[1,
Values /* (Sequence @@ # &) /* (f[##] &)],
dataset[1, (f[##] &)@*(Sequence @@ # &)@*Values]}}
} // InsertIOCells
}, Frame -> True,
Dividers -> {Thick, {Thick, {None}, Thick}, {3 -> Thick, 8 -> Thick,
13 -> Thick, 19 -> Thick, 23 -> Thick, 25 -> Thick}},
Alignment -> {Center, Center},

Background -> {Automatic, {ColorData[17, 4],
LightBrown, {LightBlue, LightGreen}}},
ItemStyle -> {Automatic, {19}}, Spacings -> {1, {1, 1, 1, {0.5}}}]]


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...