Skip to main content

approximation - Approximating for $a gg b$


I'd like to know how I could go about making approximations where one quantity is much smaller or larger than another.


For example, the expression $\frac{1}{b(a +b)}$ is approximately equal to $\frac{1}{ab}$ when $a \gg b$



But of course, simply taking the infinite limit of a does not yield the right result


i.e.


Limit[1/((a + b) b), a -> ∞]

gives a result of 0. It is the ratio of $a$ and $b$ that needs to approach infinity. One cannot do this directly via


Limit[1/((a + b) b), a/b -> ∞]

and one can get the right answer by substituting an explicit ratio via transformations such as /. (a -> r b)


So how do I get the result I require?



Answer




How about this:


Normal@Series[1/((a + b) b), {a, Infinity, 1}]

(* ==> 1/(a b) *)

Normal@Series[ArcTan[a + b], {a, Infinity, 1}]

(* ==> -(1/a) + Pi/2 *)

Edit in response to comment



Having been told what the desired result for ArcTan[a+b] is, it looks like the following expansion method might be what's needed. At least it's consistent with the information provided so far:


Normal[1/((a + O[b] + b) b)]

(* ==> 1/(a b) *)

Normal[ArcTan[a + b + O[b]]]

(* ==> ArcTan[a] *)

This uses the big-o notation, O, directly in the expression.



To automate what I did above, I would use the following Rule to implement the statement $b\ll a$ in a given expression:


expression/.a->(a+O[b])

This will cause any powers $b^n$ with $n> 0$ to be dropped when they appear in a sum with $a$.


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.