Skip to main content

approximation - Approximating for $a gg b$


I'd like to know how I could go about making approximations where one quantity is much smaller or larger than another.


For example, the expression $\frac{1}{b(a +b)}$ is approximately equal to $\frac{1}{ab}$ when $a \gg b$



But of course, simply taking the infinite limit of a does not yield the right result


i.e.


Limit[1/((a + b) b), a -> ∞]

gives a result of 0. It is the ratio of $a$ and $b$ that needs to approach infinity. One cannot do this directly via


Limit[1/((a + b) b), a/b -> ∞]

and one can get the right answer by substituting an explicit ratio via transformations such as /. (a -> r b)


So how do I get the result I require?



Answer




How about this:


Normal@Series[1/((a + b) b), {a, Infinity, 1}]

(* ==> 1/(a b) *)

Normal@Series[ArcTan[a + b], {a, Infinity, 1}]

(* ==> -(1/a) + Pi/2 *)

Edit in response to comment



Having been told what the desired result for ArcTan[a+b] is, it looks like the following expansion method might be what's needed. At least it's consistent with the information provided so far:


Normal[1/((a + O[b] + b) b)]

(* ==> 1/(a b) *)

Normal[ArcTan[a + b + O[b]]]

(* ==> ArcTan[a] *)

This uses the big-o notation, O, directly in the expression.



To automate what I did above, I would use the following Rule to implement the statement $b\ll a$ in a given expression:


expression/.a->(a+O[b])

This will cause any powers $b^n$ with $n> 0$ to be dropped when they appear in a sum with $a$.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...