Skip to main content

plotting - how to plot the dispersion curve in first brillouin zone?


Those who know some solid state physics should know what the first brillouin zone is. How do I plot the dispersion relation in the 1st brillouin zone so that the curves can 'fold back'?


For instance the code I have now is:


OmegaP=8; 
epM[Omega_]:=1-OmegaP^2/Omega^^2;
epD[Omega_]:= 1;

e2alpha[Omega_]:=(epM[Omega]-epD[Omega])/(epM[Omega]+epD[Omega])

ContourPlot[{Exp[0.5*ak]==e2alpha[Omega],Exp[0.5*ak]==-e2alpha[Omega]},{ak,0,0.5},{Omega,0.05,8}];

I have rescaled the axis so that 1st Brillouin zone is 0-0.5, 2nd Brillouin zone is 0.5-1.0, and so on. The above above only generates the lower part of the whole dispersion relation. If I extend the range of ak to, say {ak,0,2.5}, then I get a lot more missing curves, but how to I 'fold' the part from 0.5 to 2.5 into the 1st Brillouin zone?


PS: Please click here (last page, Fig.16) for an image showing what the '1st Brillouin zone' is.



Answer



The "folding in" of the reduced zone scheme is achieved by translating the center of the energy function, placing one center on each brillouin zone edge:


Plot[
{x^2, (x - Pi)^2, (x + Pi)^2, (x - 2 Pi)^2, (x + 2 Pi)^2},
{x, -Pi/2, Pi/2},
AspectRatio -> GoldenRatio,

PlotStyle -> Black
]

Mathematica graphics


I plotted here a function proportional to x2 as would be the case for free electrons. I used AspectRatio only to compensate for not having the right constant of proportionality, 22m. The centers were taken to be ±πn but should be ±πna for the actual case, where a is the lattice constant.


To plot an arbitrary number of energy bands without having to type in the functions manually you can generate them using Table:


Plot[
Flatten@Table[{(x + Pi n)^2, (x - Pi n)^2}, {n, 0, 10}],
{x, -Pi/2, Pi/2},
AspectRatio -> GoldenRatio,

PlotStyle -> Black
]

For your dispersion relation, maybe something like this could work:


eqns = Flatten@Table[{
Exp[0.5*(ak - n Pi)] == e2alpha[Omega],
Exp[0.5*(ak - n Pi)] == -e2alpha[Omega],
Exp[0.5*(ak + n Pi)] == e2alpha[Omega],
Exp[0.5*(ak + n Pi)] == -e2alpha[Omega]
}, {n, 0, 5}];


ContourPlot[Evaluate[eqns], {ak, 0, 0.5}, {Omega, 0.05, 8}]

Mathematica graphics


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...