Skip to main content

performance tuning - How to rapidly find the nearest pairs of points in different clusters


Background


For speed up this question or this question,I have such need.


Current try:


Suppose I have $3$ clusters of points:


list = {{{0, 0}, {.2, 0}}, {{2, 1}, {2, 2}, {2, 2.5}}, {{1.5, 
6}, {1.6, 7}, {1.4, 8}, {1.9, 10}}};
plot = ListPlot[list, Axes -> False, Frame -> True, PlotLegends ->Automatic,
FrameTicks -> None]



I want to find the closest pairs of points, each point in a different cluster. My current method:


Method one based on Tuples


tuplesMethod[list_] := 
First[MinimalBy[Tuples[#], EuclideanDistance @@ # &]] & /@
Subsets[list, {2}]

Method two based on Nearest


nearestMethod[list_] := 

Module[{f, var1, var2}, f = Nearest /@ Most[list];
var2 = Drop[list, #] & /@ Range[Length[list] - 1];
var1 = MapThread[Catenate /@ # /@ #2 &, {f, var2}];
Catenate[
Map[First[MinimalBy[#, EuclideanDistance @@ # &]] &,
Flatten[{var1, var2}, List /@ {2, 3, 4, 1, 5}], {2}]]]

Usage:


minDistPoints = tuplesMethod[list]



{{{0.2,0},{2,1}},{{0.2,0},{1.5,6}},{{2,2.5},{1.5,6}}}



Show it:


Show[plot, Epilog -> Line /@ minDistPoints]



But the current method is too slow, if clusters up to 10,the execution time will be cannot stand:


testPoint[n_] := (SeedRandom[2];

FindClusters[RandomReal[10 n, {20 n, 2}], n])

GeneralUtilities`BenchmarkPlot[{tuplesMethod,
nearestMethod}, testPoint, 2, TimeConstraint -> 50,
"IncludeFits" -> True]



Answer



The Nearest method should do well, but you need to make sure that it is only applied once for each cluster. Here is how I would code it. First a helper function, that finds the nearest members between one cluster and a list of other clusters:


icluster[i_, rest_]:=Module[{r, near,distances, rank,pos},

(* create a single list of other points *)
r = Catenate[rest];

(* apply NearestFunction to the list of other points *)
near = Nearest[i][r][[All, 1]];

(* compute distance squared between the nearest member and the other point *)
distances = Total[(near-r)^2, {2}];

(* rank the distances *)

rank = Ordering @ Ordering @ distances;

(* find the minimum rank for each cluster. Probably could be sped up *)
pos = Flatten @ Position[
rank,
Alternatives @@ Min /@ Internal`PartitionRagged[rank, Length/@rest]
];

(* extract near point and other points for minimum ranks *)
Transpose[{near[[pos]], r[[pos]]}]

]

We use this helper function to get the members of the clusters closest to each other:


nearestClusterMembers[list_] := Catenate @ Table[
icluster[list[[i]], list[[i+1 ;; -1]]],
{i, Length[list]-1}
]

For your simple example:


nearestClusterMembers[

{
{{0,0},{.2,0}},
{{2,1},{2,2},{2,2.5}},
{{1.5,6},{1.6,7},{1.4,8},{1.9,10}}
}
]


{{{0.2, 0}, {2, 1}}, {{0.2, 0}, {1.5, 6}}, {{2, 2.5}, {1.5, 6}}}




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...