Skip to main content

performance tuning - How to rapidly find the nearest pairs of points in different clusters


Background


For speed up this question or this question,I have such need.


Current try:


Suppose I have $3$ clusters of points:


list = {{{0, 0}, {.2, 0}}, {{2, 1}, {2, 2}, {2, 2.5}}, {{1.5, 
6}, {1.6, 7}, {1.4, 8}, {1.9, 10}}};
plot = ListPlot[list, Axes -> False, Frame -> True, PlotLegends ->Automatic,
FrameTicks -> None]



I want to find the closest pairs of points, each point in a different cluster. My current method:


Method one based on Tuples


tuplesMethod[list_] := 
First[MinimalBy[Tuples[#], EuclideanDistance @@ # &]] & /@
Subsets[list, {2}]

Method two based on Nearest


nearestMethod[list_] := 

Module[{f, var1, var2}, f = Nearest /@ Most[list];
var2 = Drop[list, #] & /@ Range[Length[list] - 1];
var1 = MapThread[Catenate /@ # /@ #2 &, {f, var2}];
Catenate[
Map[First[MinimalBy[#, EuclideanDistance @@ # &]] &,
Flatten[{var1, var2}, List /@ {2, 3, 4, 1, 5}], {2}]]]

Usage:


minDistPoints = tuplesMethod[list]



{{{0.2,0},{2,1}},{{0.2,0},{1.5,6}},{{2,2.5},{1.5,6}}}



Show it:


Show[plot, Epilog -> Line /@ minDistPoints]



But the current method is too slow, if clusters up to 10,the execution time will be cannot stand:


testPoint[n_] := (SeedRandom[2];

FindClusters[RandomReal[10 n, {20 n, 2}], n])

GeneralUtilities`BenchmarkPlot[{tuplesMethod,
nearestMethod}, testPoint, 2, TimeConstraint -> 50,
"IncludeFits" -> True]



Answer



The Nearest method should do well, but you need to make sure that it is only applied once for each cluster. Here is how I would code it. First a helper function, that finds the nearest members between one cluster and a list of other clusters:


icluster[i_, rest_]:=Module[{r, near,distances, rank,pos},

(* create a single list of other points *)
r = Catenate[rest];

(* apply NearestFunction to the list of other points *)
near = Nearest[i][r][[All, 1]];

(* compute distance squared between the nearest member and the other point *)
distances = Total[(near-r)^2, {2}];

(* rank the distances *)

rank = Ordering @ Ordering @ distances;

(* find the minimum rank for each cluster. Probably could be sped up *)
pos = Flatten @ Position[
rank,
Alternatives @@ Min /@ Internal`PartitionRagged[rank, Length/@rest]
];

(* extract near point and other points for minimum ranks *)
Transpose[{near[[pos]], r[[pos]]}]

]

We use this helper function to get the members of the clusters closest to each other:


nearestClusterMembers[list_] := Catenate @ Table[
icluster[list[[i]], list[[i+1 ;; -1]]],
{i, Length[list]-1}
]

For your simple example:


nearestClusterMembers[

{
{{0,0},{.2,0}},
{{2,1},{2,2},{2,2.5}},
{{1.5,6},{1.6,7},{1.4,8},{1.9,10}}
}
]


{{{0.2, 0}, {2, 1}}, {{0.2, 0}, {1.5, 6}}, {{2, 2.5}, {1.5, 6}}}




Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...