Skip to main content

programming - How to define the Bernstein function like the built-in BernsteinBasis?


We know the Bernstein function defined as below:


$$B_{n,i}(u)=\binom n i u^i(1-u)^{n-i}$$


And we define $B_{n,i}(u)=0$ when $i<0 $ or $i>n$


In addition, the first derivative of $B_{n,i}(u)$ has the below relationship:


$$B'_{n,i}(u)=n\left[B_{n-1,i-1}(u)-B_{n-1,i}(u)\right]$$



So I can utilize this equation to calculate the derivative of order $k$


$$B^{(k)}_{n,i}(u)=n(n-1)\cdots (n-k+1)\\ \left[\{B_{n-k,i-k}(u),\cdots,B_{n-k,i}(u)\} .coefficient\right]$$


Here,$coefficient$ has the style (1,-3,3,1),(1, -4, 6, -4, 1),etc


Implementation


Bernstein[n_, i_, u_] /; i < 0 || i > n := 0
Bernstein[0, 0, u_] := 1
Bernstein[n_, i_, u_?NumericQ] := Binomial[n, i] u^i (1 - u)^(n - i)

The derivative of Bernstein


D[Bernstein[n_, i_, u_], {u_, k_}] ^:=

Module[{coeff, body},
coeff = Times @@ Array[n - # &, k, 0];
body =
Array[Bernstein[n - k, #, u] &, k + 1, i - k].
CoefficientList[(1 - u)^k, u];
coeff* body
]
(*=======================================*)
D[Bernstein[n_, i_, u_], u_] ^:= D[Bernstein[n, i, u], {u, 1}]


However, the Mathematica give me the warining information



enter image description here



Expand the expression


PiecewiseExpand[expr_] ^:=
expr /. Bernstein[n_, i_, u_Symbol] :>
Binomial[n, i] u^i (1 - u)^(n - i)



enter image description here





Tesing


Successful case


Bernstein[3, 2, .4](*0.288*)

D[Bernstein[3, 2, u], u]



3 (Bernstein[2, 1, u] - Bernstein[2, 2, u])

D[Bernstein[3, 2, u], {u, 2}]


6 (Bernstein[1, 0, u] - 2 Bernstein[1, 1, u])

Failture


D[Bernstein[3, 2, u], u] // PiecewiseExpand



no expantion >_<



Question



  • How to fix the warining information about UpSetDelayed?

  • Is it possible to implement the derivative of $B_{n,i}(u)$ by rule-based solution? I have a trial, but failed.




My trial



D[Berns[n_, i_, u_], {u_, k_}] ^:=
Do[
Bernstein[n, i, u] /.
Bernstein[x_, y_, z_] :>
x (Bernstein[x - 1, y - 1, u] - Bernstein[x - 1, y, z]), {k}]
(*failture*)

Built-in function


D[BernsteinBasis[6, 3, u], {u, 3}]



enter image description here



Obviously, the Mathematica utilizes a recursive method by observing the result.




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...