Skip to main content

programming - How to define the Bernstein function like the built-in BernsteinBasis?


We know the Bernstein function defined as below:


$$B_{n,i}(u)=\binom n i u^i(1-u)^{n-i}$$


And we define $B_{n,i}(u)=0$ when $i<0 $ or $i>n$


In addition, the first derivative of $B_{n,i}(u)$ has the below relationship:


$$B'_{n,i}(u)=n\left[B_{n-1,i-1}(u)-B_{n-1,i}(u)\right]$$



So I can utilize this equation to calculate the derivative of order $k$


$$B^{(k)}_{n,i}(u)=n(n-1)\cdots (n-k+1)\\ \left[\{B_{n-k,i-k}(u),\cdots,B_{n-k,i}(u)\} .coefficient\right]$$


Here,$coefficient$ has the style (1,-3,3,1),(1, -4, 6, -4, 1),etc


Implementation


Bernstein[n_, i_, u_] /; i < 0 || i > n := 0
Bernstein[0, 0, u_] := 1
Bernstein[n_, i_, u_?NumericQ] := Binomial[n, i] u^i (1 - u)^(n - i)

The derivative of Bernstein


D[Bernstein[n_, i_, u_], {u_, k_}] ^:=

Module[{coeff, body},
coeff = Times @@ Array[n - # &, k, 0];
body =
Array[Bernstein[n - k, #, u] &, k + 1, i - k].
CoefficientList[(1 - u)^k, u];
coeff* body
]
(*=======================================*)
D[Bernstein[n_, i_, u_], u_] ^:= D[Bernstein[n, i, u], {u, 1}]


However, the Mathematica give me the warining information



enter image description here



Expand the expression


PiecewiseExpand[expr_] ^:=
expr /. Bernstein[n_, i_, u_Symbol] :>
Binomial[n, i] u^i (1 - u)^(n - i)



enter image description here





Tesing


Successful case


Bernstein[3, 2, .4](*0.288*)

D[Bernstein[3, 2, u], u]



3 (Bernstein[2, 1, u] - Bernstein[2, 2, u])

D[Bernstein[3, 2, u], {u, 2}]


6 (Bernstein[1, 0, u] - 2 Bernstein[1, 1, u])

Failture


D[Bernstein[3, 2, u], u] // PiecewiseExpand



no expantion >_<



Question



  • How to fix the warining information about UpSetDelayed?

  • Is it possible to implement the derivative of $B_{n,i}(u)$ by rule-based solution? I have a trial, but failed.




My trial



D[Berns[n_, i_, u_], {u_, k_}] ^:=
Do[
Bernstein[n, i, u] /.
Bernstein[x_, y_, z_] :>
x (Bernstein[x - 1, y - 1, u] - Bernstein[x - 1, y, z]), {k}]
(*failture*)

Built-in function


D[BernsteinBasis[6, 3, u], {u, 3}]



enter image description here



Obviously, the Mathematica utilizes a recursive method by observing the result.




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...