Plot[{(E^x)^(-2 I π) Hypergeometric2F1[-2 I π - 2 I Sqrt[2] π, -2 I π + 2 I Sqrt[2] π,
1 - 4 I π, -E^x] +
(E^x)^ (2 I π) Hypergeometric2F1[2 I π - 2 I Sqrt[2] π, 2 I π + 2 I Sqrt[2] π,
1 + 4 I π, -E^x]},
{x, -10, 10}]
Why? How to fix?
Answer
The numerical evaluation of your argument function leads to very small imaginary parts in the result that are due to numerical inaccuracy. Remove them by wrapping the argument of Plot
in Chop
(see its documentation):
Plot[Chop[(E^x)^(-2 I π) Hypergeometric2F1[-2 I π -
2 I Sqrt[2] π, -2 I π + 2 I Sqrt[2] π,
1 - 4 I π, -E^x] + (E^x)^(2 I π) Hypergeometric2F1[
2 I π - 2 I Sqrt[2] π, 2 I π + 2 I Sqrt[2] π,
1 + 4 I π, -E^x]], {x, -10, 10}]
Comments
Post a Comment