Skip to main content

calculus and analysis - Integration over a (non-parametric) curve defined by indicator function


I want to integrate the real function myFun defined on a 2D plane over the line locus, defined as the solution of a set of equality and inequalities. For instance, let's define



myFun[x_,y_]:= Exp[-(x^2+y^2)]/\[Pi]
locus[x_,y_]:= x>0 && y==0

This is just a simplified version of the general problem, in general we may not be able to esplicitate the line locus in a parametric form (and solve the integral, as in this case, with an appropriate substitution). Consider we can find it implicitly as the intersection of a region (defined by inequalities) with an equality (as given above).


How do I integrate myFun over the set locus? It should be something like


Integrate[
Exp[-(x^2 +
y^2)]/\[Pi] Ind[x,y], {x, -\[Infinity], +\[Infinity]}, {y, \
-\[Infinity], +\[Infinity]}]


with Ind[x,y] an indicator function which restrict the integration on the correct set. This function probably involves Boole and DiracDelta function. For example, in this case it works


Integrate[
Integrate[
Exp[-(x^2 + y^2)] Boole[
x > 0] DiracDelta[
y]/\[Pi], {y, -\[Infinity], +\[Infinity]}], {x, -\[Infinity], +\
\[Infinity]}]

but it is just because we could "solve" the line locus. (NOTE the order of the variable - if swapped it does not work.)


But what about the general case? For example, what if the 2D plane is the complex plane and I have the (not necessarily straight) line



locus[x_,y_]:= Re[(x + I y)^2+(3 + I 5)]>0 && Im[(x + I y)^2+(3 + I 5)]==0


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...