Skip to main content

linear algebra - Trying to simplify Root expressions from the output of Eigenvalues


I am trying to calculate eigenvalues of a sparse matrix with only two distinct non-zero elements, here Alpha and Beta, which are both negative reals. Mathematica returns some complex expressions with Root[] values when using the Eigenvalues[] command on the following matrixA:



In all cases the matrices are symmetric and real and hence have real eigenvalues.


matrixA={
{α, β, 0, 0, 0, 0, β, 0, 0, β},
{β, α, β, 0, 0, 0, 0, 0, 0, 0},
{0, β, α, β, 0, 0, 0, 0, 0, 0},
{0, 0, β, α, β, 0, 0, 0, 0, 0},
{0, 0, 0, β, α, β, 0, 0, 0, 0},
{0, 0, 0, 0, β, α, β, 0, 0, 0},
{β, 0, 0, 0, 0, β, α, β, 0, 0},
{0, 0, 0, 0, 0, 0, β, α, β, 0},

{0, 0, 0, 0, 0, 0, 0, β, α, β},
{β, 0, 0, 0, 0, 0, 0, 0, β, α}
}

For comparison, with all the other similar matrices I've tried (see below e.g. matrixB) Mathematica will put out simple decimal approximations (using Eigenvalues[matrixB] // N // Simplify)


Can anyone point out a way to get expressions for the matrixA as simple as for matrixB?


And yes, the desired simple answers for matrixA do exist, I can get them with other programs, but I want to use Mathematica!




I should add that I already have already used $Assumptions = α<0 && β <0 at the top of my worksheet.


matrixB={

{α, β, 0, 0, 0, 0, 0, 0, 0, β},
{β, α, β, 0, 0, 0, 0, 0, 0, 0},
{0, β, α, β, 0, 0, 0, β, 0, 0},
{0, 0, β, α, β, 0, 0, 0, 0, 0},
{0, 0, 0, β, α, β, 0, 0, 0, 0},
{0, 0, 0, 0, β, α, β, 0, 0, 0},
{0, 0, 0, 0, 0, β, α, β, 0, 0},
{0, 0, β, 0, 0, 0, β, α, β, 0},
{0, 0, 0, 0, 0, 0, 0, β, α, β},
{β, 0, 0, 0, 0, 0, 0, 0, β, α}

}

Answer



Well, I figured out how the other programs do get numeric answers. Of course the trick is to eliminate the symbols. Since matrixA is so simply structured it can be massaged into a non-symbolic form, calculate numerically the eigenvalues of that, and then unmassage them to recover the symbolic eigenvalues. Divide the whole matrix by β then "re-zero" the main diagonal to α/β.


For reference,


reducedmatrixA=({
{0, 1, 0, 0, 0, 0, 1, 0, 0, 1},
{1, 0, 1, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 1, 0, 0, 0, 0},

{0, 0, 0, 0, 1, 0, 1, 0, 0, 0},
{1, 0, 0, 0, 0, 1, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 1},
{1, 0, 0, 0, 0, 0, 0, 0, 1, 0}
} )

numericeigenvalues = Sort[Eigenvalues[reducedmatrixA] // Simplify // N]
symboliceigenvalues = α + β numericeigenvalues


does the trick. Thanks everyone for your pointers on the algebra.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]