Skip to main content

plotting - Why Plot3D does not accept Epilog option


I am trying to visualize 3D points with Plot3D using the option Epilog. If you check the options of Plot3D ( Options[Plot3D] ), it can be seen that Epilog is one of the options of Plot3D. But when implementing this option not result as expected. for example:


  data = Flatten[
Table[{i, j, i^2 + j^2}, {i, -2, 2, .5}, {j, -2, 2, .5}], 1];
Plot3D[Exp[-x^2 - y^2], {x, -2, 2}, {y, -2, 2},

Epilog -> {PointSize[Large], Point[data]}, PlotRange -> All]

Of course there is another ways (like using Show), but the question is why Plot3D does not accept its own option?



Answer




Why does Plot3D not accept its own option?



But it does accept it just fine, as Kuba's comment shows:


Plot3D[Exp[-x^2 - y^2], {x, -2, 2}, {y, -2, 2},
Epilog -> {PointSize[Large], Point[{.5, .5}]}, PlotRange -> All]


I guess you mean to ask,



Why does Plot3D not accept 3D graphics in Epilog?



Because Epilog is for drawing things in front of the plot, just as Prolog is for drawing things behind the plot. So, the ordering is: a flat 2D layer for Prolog, then the 3D plot, then a flat 2D layer for Epilog. (Like a sandwich... mmm.) If Epilog accepted 3D graphics, then they would exist in the same space as the plot itself, and would not always appear in front.


(Actually, Mathematica could in principle allow 3D graphics in Epilog by rendering them with the same viewpoint but on a separate buffer and then compositing the result on top of the plot, so that you would always see them even when they are geometrically behind the plot. But I imagine that would be rarely useful and often confusing.)


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]