Skip to main content

plotting - Why Plot3D does not accept Epilog option


I am trying to visualize 3D points with Plot3D using the option Epilog. If you check the options of Plot3D ( Options[Plot3D] ), it can be seen that Epilog is one of the options of Plot3D. But when implementing this option not result as expected. for example:


  data = Flatten[
Table[{i, j, i^2 + j^2}, {i, -2, 2, .5}, {j, -2, 2, .5}], 1];
Plot3D[Exp[-x^2 - y^2], {x, -2, 2}, {y, -2, 2},

Epilog -> {PointSize[Large], Point[data]}, PlotRange -> All]

Of course there is another ways (like using Show), but the question is why Plot3D does not accept its own option?



Answer




Why does Plot3D not accept its own option?



But it does accept it just fine, as Kuba's comment shows:


Plot3D[Exp[-x^2 - y^2], {x, -2, 2}, {y, -2, 2},
Epilog -> {PointSize[Large], Point[{.5, .5}]}, PlotRange -> All]


I guess you mean to ask,



Why does Plot3D not accept 3D graphics in Epilog?



Because Epilog is for drawing things in front of the plot, just as Prolog is for drawing things behind the plot. So, the ordering is: a flat 2D layer for Prolog, then the 3D plot, then a flat 2D layer for Epilog. (Like a sandwich... mmm.) If Epilog accepted 3D graphics, then they would exist in the same space as the plot itself, and would not always appear in front.


(Actually, Mathematica could in principle allow 3D graphics in Epilog by rendering them with the same viewpoint but on a separate buffer and then compositing the result on top of the plot, so that you would always see them even when they are geometrically behind the plot. But I imagine that would be rarely useful and often confusing.)


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...