Skip to main content

list manipulation - Failure in integrating from an interpolating function!



Consider a list like below:


ttable={{0, 2.6596 - 66.137 I}, {1/9, 2.45339 - 65.3148 I}, {2/9, 
1.82053 - 62.8922 I}, {1/3, 0.720006 - 58.9982 I}, {4/
9, -0.911205 - 53.8382 I}, {5/9, -3.15056 - 47.6797 I}, {2/
3, -6.08057 - 40.8346 I}, {7/9, -9.77826 - 33.6382 I}, {8/
9, -14.3047 - 26.4282 I}, {1, -19.6947 - 19.5216 I}}`

by defining "f" as interpolating function we'll have:


f = Interpolation[ttable] 


now we define ff as the following integration:


ff[\[Xi]_]:=NIntegrate[(f[rr]) Cos[rr \[Xi]], {rr, 0, 1}] 

the first problem is that this function can not be calculated and I have no idea why the followoing error happens:


In[87]:= ff[.1]
During evaluation of In[87]:= NIntegrate::inumr: The integrand Cos[rr \[Xi]] InterpolatingFunction[{{0.,1.}},{4,15,0,{10},{4},0,0,0,0,Automatic,{},{},False},<<1>>,{
Developer`PackedArrayForm,{0,<<10>>},{2.6596 -66.137 I,<<8>>,-19.6947-19.5216 I}},{Automatic}][rr] has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,0.111111}}. >>
Out[87]= NIntegrate[f[rr] Cos[rr \[Xi]],{rr,0,1}]

The other thing should be mentioned is that I have to use ff in integrand of another integration like below:



NIntegrate[ff[\[Xi]] * \[Xi],{\[Xi],0,3}] 

I've manipulated the former equations in many ways but none of them made an accurate output for the last integration, so I would be greatly thankful if somebody out there could help me!



Answer



The most important information is that you used your function ff inside another NIntegrate, because this is the source of confusion. What you have to know is that NIntegrate doesn't start right away with the numerical calculation when you call


NIntegrate[ff[ξ]*ξ, {ξ, 0, 3}]

It will try to do some analysis of your integrand and most likely, it will try to evaluate ff[ξ] without putting in numbers. And what happens then? Right, you call the NIntegrate of ff without proper numerical value of ξ:



Mathematica graphics




The solution is pretty simple: Change your definition of ff so that it only calls its NIntegrate body when the argument is indeed numeric:


ClearAll[ff];
ff[ξ_?NumericQ] := NIntegrate[(f[rr]) Cos[rr ξ], {rr, 0, 1}]
NIntegrate[ff[ξ]*ξ, {ξ, 0, 3}]

(* 4.28747 - 124.522 I *)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...