Skip to main content

matrix - Solving "Lyapunov-like" equation AX+X'B=C


Is there some way I can solve the following equation with $d-by-d$ matrices in Mathematica in reasonable time?


$$AX+X'B=C$$



My solution below calls linsolve on $d^2,d^2$ matrix, which is too expensive for my case (my d is 1000)


kmat[n_] := Module[{mat1, mat2},
mat1 = Array[{#1, #2} &, {n, n}];
mat2 = Transpose[mat1];
pos[{row_, col_}] := row + (col - 1)*n;
poses = Flatten[MapIndexed[{pos[#1], pos[#2]} &, mat2, {2}], 1];
Normal[SparseArray[# -> 1 & /@ poses]]
];
unvec[Wf_, rows_] := Transpose[Flatten /@ Partition[Wf, rows]];
vec[x_] := Flatten[Transpose[x]];


solveLyapunov2[a_, b_, c_] := Module[{},
dims = Length[a];
ii = IdentityMatrix[dims];
x0 = LinearSolve[
KroneckerProduct[ii, a] +
KroneckerProduct[Transpose[b], ii].kmat[dims], vec[c]];
X = unvec[x0, dims];
Print["error is ", Norm[a.X + Transpose[X].b - c]];
X

]

a = RandomReal[{-3, 3}, {3, 3}];
b = RandomReal[{-3, 3}, {3, 3}];
c = RandomReal[{-3, 3}, {3, 3}];
X = solveLyapunov2[a, b, c]

Edit Sep 30: An approximate solution would be useful as well. In my application $C$ is the gradient, and $X$ is the preconditioned gradient, so I'm looking for something that's much better than a "default" solution of $X_0=C$



Answer



General matrices



For the desired matrix sizes I have doubts that a numerical solution would be feasible. Here is a simplified code using sparse matrices.


tmSylvester[n_]:=Module[{a,b,c,sA,sB,sC,sAB},
a=RandomReal[{-3,3},{n,n}];
b=RandomReal[{-3,3},{n,n}];
c=RandomReal[{-3,3},{n,n}];
sA=SparseArray[Table[{(i-1)n+l,(k-1)n+l}->a[[i,k]],{i,n},{k,n},{l,n}]//Flatten];
sB=SparseArray[Table[{(l-1)n+j,(k-1)n+l}->b[[k,j]],{k,n},{j,n},{l,n}]//Flatten];
sAB=sA+sB;
sC=SparseArray[Table[{(i-1)n+j}->c[[i,j]],{i,n},{j,n}]//Flatten];
First[Timing[LinearSolve[sAB,sC];]]]


Now, let us plot the timing


ListLogPlot[Table[{n,tmSylvester[n]},{n,10,120,10}],Joined->True,PlotTheme->{"Frame","Monochrome"}, FrameLabel->{"Matrix Size","Time(s)"}]

enter image description here


Even at a very optimistic extrapolation it is unlikely that the n=1000 calculation would be routinely possible. There are, however, experts here that might be able to further tune up the linear solver.


Nonsingular matrices


According to F. M. Dopico, J. González, D. Kressner, and V. Simoncini. Projection methods for large-scale T-Sylvester equations, in Mathematics of Computation (2015), under the usual conditions of existence the following equations have equal unique solutions


$$􏰁B^{−T} A􏰂 X − X 􏰁A^{−T} B􏰂 = B^{−T} C − B^{−T} C^{T} A^{−T} B;$$ $$AX + X^T B = C, $$ where $A^{-T}\equiv(A^{-1})^T$.


Therefore, we can use the Lyapunov solver



tmDopico[n_]:=Module[{a,b,c},
a=RandomReal[{-3,3},{n,n}];
b=RandomReal[{-3,3},{n,n}];
c=RandomReal[{-3,3},{n,n}];
First[Timing[LyapunovSolve[Transpose[Inverse[b]].a,-Transpose[Inverse[a]].b,Transpose[Inverse[b]].c-Transpose[Inverse[b]].Transpose[c].Transpose[Inverse[a]].b];]]]

Let us check the timing:


ListLogPlot[Table[{n,tmDopico[n]},{n,50,1000,50}],Joined->True,PlotTheme->{"Frame","Monochrome"}, FrameLabel->{"Matrix size","Time(s)"}]

enter image description here



The method should therefore have $\mathcal{O}(n^3)$ scaling under favorite conditions.


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],