Skip to main content

core language - What is the fastest way to get a list of subexpressions and their positions?


I have spent quite some time trying to figure out what the fastest way is to get a list lists of all subexpressions and their positions. I have tried things with MapIndexed, which seems ideal in cases where we have an expression in which no functions with Hold-Attributes are present that we can let evaluate freely. For Held expressions, however, I found using MapIndexed complicated and I was unable to get a practical solution using this. Furthermore, I have tried things with Extract and Position.



All these things were hinted at in the comments of/answers to the positionFunction question by Mr.Wizard, which caused me to be interested in this. Because I have spent time on this and because I feel this is quite a fundamental question, I would like to get some feedback. To be fair, I am also quite glad with my own answer, as it is considerably faster than the alternatives I found (although it took me a long time), but if there are better alternatives I would be even gladder to know. Lastly, it may be nice for me to refer to this Q&A later, if I ever write a good answer to Mr.Wizards question.


The question is: What is the fastest way to get a list of lists of subexpressions and their positions, that works with held expressions?



Test expressions


Let's make a big expression to do tests with. Let


body[i_][n_] := If[n < i, head[body[i][n + 1], body[i][n + 1]], 1];
tree12 = head[body[12][1]];
tree3 = head[body[3][1]];

We have



LeafCount[tree12] == 2^12 && LeafCount[tree3] == 2^3


(True)




Answer



I'm not certain I understand your goals, though I too wish there were a cleaner way to do this.
I presume that you are dissatisfied with the performance of this fairly direct solution:


index[expr_] := {Extract[expr, #, HoldComplete], #} & /@ Position[expr, _]


Your own method using both Position and Level is a clever way to vectorize this as it were. I do not understand why you gave your toExprPosLists function a hold attribute at this would seem to only complicate using it. Perhaps you would find value in this:


index2[expr_, lev_ : {0, -1}] := 
Thread[{Level[expr, lev, HoldComplete, Heads -> True],
HoldComplete @@ Position[expr, _, lev]}, HoldComplete]

This returns something similar to your function and it is faster:


time = Function[x, First@Timing@Do[x, {500}]/500, HoldAll];

toExprPosLists @@ {tree12} // time
index[tree12] // time

index2[tree12] // time


0.003432

0.005648

0.00184

Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...