Skip to main content

How do I constrain movement for lists of Locators using 2nd argument of Dynamic?


I need to display edge labels of a graph in a way that allows the edge labels to be moved. Locator seems the simplest and most obvious function to use. My application requires an interface that generates new graphs with different numbers of vertices and edges, so I can't treat the locators individually.


With[

{coords = {{1.08, 0.94}, {1.08, 0.036}, {0., 0.97}, {0., 0.}, {1.94, 0.49}},
edges = {{1, 2}, {1, 3}, {2, 5}, {3, 4}, {4, 2}, {5, 1}}},
DynamicModule[
{edgePosns = Table[0.5, {Length@edges}]},
(betweenPnt[a_, b_, l_] := (1 - l) a + l b;
DynamicModule[
{edgeCentres =
MapThread[
With[{av = coords[[#1[[1]]]], bv = coords[[#1[[2]]]]},
Dynamic[betweenPnt[av, bv, #2]]] &,

{edges, edgePosns}]},
Graphics[
GraphicsComplex[
coords,
{{Line[edges]}, {Darker@Red, PointSize[0.02],
Map[Point, Range[5]]},
Map[Locator, edgeCentres]}], ImageSize -> 400]])]]

picture of output of above


The locators can be moved, as expected. What I did not expect was that, (even) if the output is deleted and the cell is re-evaluated, the locators retain their new positions. However, I've now learned that this is standard behaviour (see m_goldberg's comment below), which can be fixed by Initialization (see Kuba's solution).



Also, I would like to constrain the movement of locators to lie on the edges, for which I hope to use the 2nd argument of Dynamic. Can I do it with this (admittedly flawed) design? My attempts so far have resulted in unresponsive locators. I think I need to update edgeCentres using the callback of the 2nd argument, but whether it is because it is a list, or for some other reason, this is ineffective. I do not know how (or if) I can implement this constraint by adding a second argument to Dynamic in the code above.


In fact, I prefer to update edgePosns, which is list of the proportions of respective edges that the locators mark, but I need to be able to walk first.


Related question now split from original question following Kuba's suggestion.



Answer



This is how I'd do that:


DynamicModule[{coords, edges, lines, centers, locators},

coords = {{1.08, 0.94}, {1.08, 0.036}, {0., 0.97}, {0., 0.}, {1.94, 0.49}};
edges = {{1, 2}, {1, 3}, {2, 5}, {3, 4}, {4, 2}, {5, 1}};
lines = (coords[[#]] & /@ edges);

centers = .5 (# + #2) & @@@ lines;
locators = With[{i = #2[[1]], p1 = #[[1]], p2 = #[[2]]}
,
With[{norm = Norm@N@(p2 - p1)}
,
Locator[Dynamic[ centers[[i]],
(centers[[i]] = p1 + Normalize[(p2 - p1)] Clip[(p2 - p1).(# - p1), {0,
norm}]) &]]]] &;

Graphics[{GraphicsComplex[

coords, {{Line[edges]}, {Darker@Red, PointSize[0.02],
Map[Point, Range[5]]}}], MapIndexed[locators, lines]},
ImageSize -> 400, Frame -> True, PlotRange -> 2]
]

enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...