I know that it is possible to expand StirlingS2[n, 10]
in terms of elementary functions of n
. I tried FunctionExpand
but it returned unevaluated:
In[1]:= FunctionExpand[StirlingS2[n, 10]]
Out[1]= StirlingS2[n, 10]
Is there a way to do this in Mathematica?
Answer
You need to specify assumptions:
In[1]:= FunctionExpand[StirlingS2[n, 10], n > 0 && Mod[n, 1] == 0]
Out[1]= -(1/362880) + 2^(-8 + n)/315 + 1/135 2^(-7 + 2 n) +
1/315 2^(-8 + 3 n) - 3^(-3 + n)/1120 +
1/5 2^(-7 + n) 3^(-3 + n) - 5^(-2 + n)/576 +
1/567 2^(-8 + n) 5^(-2 + n) - 7^(-1 + n)/4320 - 9^(-2 + n)/4480
Comments
Post a Comment