Skip to main content

numerics - CharacteristicPolynomial returns 0


I have a following matrix.


m = {{-0.576 Cos[y], 0, 0, 0. + 0.06 I, 0, 0.369858, 0, 0, 0,    0, -0.0906385, 0, 0, -0.265868, 0.0366083, 0.0157771, -0.185737,    0.0349767, 0.0435434, -0.276945, (0.288 - 0.498831 I) Sin[y],    0. - 0.03 I, 0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0}, {0, -0.576 Cos[y], 0. - 0.03 I, 0, 0, 0, -0.170921, 0, 0, 0, 0,    0.234664, 0.234164, 0, 0, -0.185737, 0.205344, -0.239136, -0.249447,    0.143353, 0. + 0.03 I, (0.288 - 0.498831 I) Sin[y], 0, -0.03,    0.0519615, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0,    0. + 0.03 I, -0.576 Cos[y], 0, 0, 0, 0, 0.369858, 0, 0, 0,    0.234164, -0.0357261, 0, 0, 0.0349767, -0.239136, -0.0707859,    0.185737, 0.248295, -0.03, 0, (0.288 - 0.498831 I) Sin[y],    0. - 0.03 I, 0. - 0.0519615 I, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0}, {0. - 0.06 I, 0, 0, -0.576 Cos[y], 0, 0, 0,    0, -0.244138, -0.0422717, -0.265868, 0, 0, 0.216359, 0.0211358,    0.0435434, -0.249447, 0.185737, 0.0660567, 0.159894, 0, 0.03,    0. + 0.03 I, (0.288 - 0.498831 I) Sin[y], 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, -0.576 Cos[y], 0, 0,    0, -0.0422717, -0.195326, 0.0366083, 0, 0,    0.0211358, -0.195326, -0.276945, 0.143353, 0.248295, 0.159894,    0.293945, 0, -0.0519615, 0. + 0.0519615 I,    0, (0.288 - 0.498831 I) Sin[y], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0}, {0.369858, 0, 0, 0, 0, -0.576 Cos[y], 0, 0, 0. + 0.06 I,    0, -0.0906385, 0, 0, 0.265868, -0.0366083, 0.0157771, 0.185737,    0.0349767, -0.0435434, 0.276945, 0, 0, 0, 0,    0, (0.288 + 0.498831 I) Sin[y], 0. - 0.03 I, 0.03, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0}, {0, -0.170921, 0, 0, 0, 0, -0.576 Cos[y],    0. - 0.03 I, 0, 0, 0, 0.234664, -0.234164, 0, 0, 0.185737, 0.205344,    0.239136, -0.249447, 0.143353, 0, 0, 0, 0, 0,    0. + 0.03 I, (0.288 + 0.498831 I) Sin[y], 0, -0.03, 0.0519615, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0.369858, 0, 0, 0,    0. + 0.03 I, -0.576 Cos[y], 0, 0, 0, -0.234164, -0.0357261, 0, 0,    0.0349767, 0.239136, -0.0707859, -0.185737, -0.248295, 0, 0, 0, 0,    0, -0.03, 0, (0.288 + 0.498831 I) Sin[y], 0. - 0.03 I,    0. - 0.0519615 I, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0,    0, -0.244138, -0.0422717, 0. - 0.06 I, 0, 0, -0.576 Cos[y], 0,    0.265868, 0, 0, 0.216359,    0.0211358, -0.0435434, -0.249447, -0.185737, 0.0660567, 0.159894, 0,    0, 0, 0, 0, 0, 0.03, 0. + 0.03 I, (0.288 + 0.498831 I) Sin[y], 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, -0.0422717, -0.195326, 0,    0, 0, 0, -0.576 Cos[y], -0.0366083, 0, 0, 0.0211358, -0.195326,    0.276945, 0.143353, -0.248295, 0.159894, 0.293945, 0, 0, 0, 0, 0,    0, -0.0519615, 0. + 0.0519615 I, 0, (0.288 + 0.498831 I) Sin[y], 0,    0, 0, 0, 0, 0, 0, 0, 0, 0}, {-0.0906385, 0, 0, -0.265868,    0.0366083, -0.0906385, 0, 0, 0.265868, -0.0366083, -0.576 Cos[y], 0,    0, 0. + 0.06 I, 0, 0.0911964, 0, 0.356683, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, -0.576 Sin[y], 0. - 0.03 I, 0.03, 0, 0, 0, 0, 0, 0,    0}, {0, 0.234664, 0.234164, 0, 0, 0, 0.234664, -0.234164, 0, 0,    0, -0.576 Cos[y], 0. - 0.03 I, 0, 0, 0, -0.208851, 0,    0.0722586, -0.286706, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0. + 0.03 I, -0.576 Sin[y], 0, -0.03, 0.0519615, 0, 0, 0, 0, 0}, {0,    0.234164, -0.0357261, 0, 0, 0, -0.234164, -0.0357261, 0, 0, 0,    0. + 0.03 I, -0.576 Cos[y], 0, 0, 0.356683, 0, 0.343409, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, -0.03, 0, -0.576 Sin[y], 0. - 0.03 I,    0. - 0.0519615 I, 0, 0, 0, 0, 0}, {-0.265868, 0, 0, 0.216359,    0.0211358, 0.265868, 0, 0, 0.216359, 0.0211358, 0. - 0.06 I, 0,    0, -0.576 Cos[y], 0, 0, 0.0722586, 0, -0.00936269, -0.319789, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0. + 0.03 I, -0.576 Sin[y], 0, 0,    0, 0, 0, 0}, {0.0366083, 0, 0, 0.0211358, -0.195326, -0.0366083, 0,    0, 0.0211358, -0.195326, 0, 0, 0, 0, -0.576 Cos[y], 0, -0.286706,    0, -0.319789, 0.293945, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.0519615,    0. + 0.0519615 I, 0, -0.576 Sin[y], 0, 0, 0, 0,    0}, {0.0157771, -0.185737, 0.0349767, 0.0435434, -0.276945,    0.0157771, 0.185737, 0.0349767, -0.0435434, 0.276945, 0.0911964, 0,    0.356683, 0, 0, 1.02645, 0, 0, 0. + 0.53 I, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0. - 0.265 I, 0.265, 0, 0}, {-0.185737,    0.205344, -0.239136, -0.249447, 0.143353, 0.185737, 0.205344,    0.239136, -0.249447, 0.143353, 0, -0.208851, 0,    0.0722586, -0.286706, 0, 1.02645, 0. - 0.265 I, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0. + 0.265 I, 0, 0, -0.265,    0.458993}, {0.0349767, -0.239136, -0.0707859, 0.185737, 0.248295,    0.0349767, 0.239136, -0.0707859, -0.185737, -0.248295, 0.356683, 0,    0.343409, 0, 0, 0, 0. + 0.265 I, 1.02645, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, -0.265, 0, 0, 0. - 0.265 I,    0. - 0.458993 I}, {0.0435434, -0.249447, 0.185737, 0.0660567,    0.159894, -0.0435434, -0.249447, -0.185737, 0.0660567, 0.159894, 0,    0.0722586, 0, -0.00936269, -0.319789, 0. - 0.53 I, 0, 0, 1.02645, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.265,    0. + 0.265 I, 0, 0}, {-0.276945, 0.143353, 0.248295, 0.159894,    0.293945, 0.276945, 0.143353, -0.248295, 0.159894, 0.293945,    0, -0.286706, 0, -0.319789, 0.293945, 0, 0, 0, 0, 1.02645, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.458993, 0. + 0.458993 I,    0, 0}, {(0.288 + 0.498831 I) Sin[y], 0. - 0.03 I, -0.03, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.576 Cos[y], 0, 0,    0. - 0.06 I, 0, 0.369858, 0, 0, 0, 0, -0.0906385, 0, 0, -0.265868,    0.0366083, 0.0157771, -0.185737, 0.0349767,    0.0435434, -0.276945}, {0. + 0.03 I, (0.288 + 0.498831 I) Sin[y], 0,    0.03, -0.0519615, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0.576 Cos[y], 0. + 0.03 I, 0, 0, 0, -0.170921, 0, 0, 0, 0, 0.234664,    0.234164, 0, 0, -0.185737, 0.205344, -0.239136, -0.249447,    0.143353}, {0.03, 0, (0.288 + 0.498831 I) Sin[y], 0. - 0.03 I,    0. - 0.0519615 I, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0. - 0.03 I, 0.576 Cos[y], 0, 0, 0, 0, 0.369858, 0, 0, 0,    0.234164, -0.0357261, 0, 0, 0.0349767, -0.239136, -0.0707859,    0.185737, 0.248295}, {0, -0.03,    0. + 0.03 I, (0.288 + 0.498831 I) Sin[y], 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0. + 0.06 I, 0, 0, 0.576 Cos[y], 0, 0, 0,    0, -0.244138, -0.0422717, -0.265868, 0, 0, 0.216359, 0.0211358,    0.0435434, -0.249447, 0.185737, 0.0660567, 0.159894}, {0, 0.0519615,    0. + 0.0519615 I, 0, (0.288 + 0.498831 I) Sin[y], 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.576 Cos[y], 0, 0,    0, -0.0422717, -0.195326, 0.0366083, 0, 0,    0.0211358, -0.195326, -0.276945, 0.143353, 0.248295, 0.159894,    0.293945}, {0, 0, 0, 0, 0, (0.288 - 0.498831 I) Sin[y],    0. - 0.03 I, -0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.369858, 0,    0, 0, 0, 0.576 Cos[y], 0, 0, 0. - 0.06 I, 0, -0.0906385, 0, 0,    0.265868, -0.0366083, 0.0157771, 0.185737, 0.0349767, -0.0435434,    0.276945}, {0, 0, 0, 0, 0, 0. + 0.03 I, (0.288 - 0.498831 I) Sin[y],    0, 0.03, -0.0519615, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.170921, 0,    0, 0, 0, 0.576 Cos[y], 0. + 0.03 I, 0, 0, 0, 0.234664, -0.234164,    0, 0, 0.185737, 0.205344, 0.239136, -0.249447, 0.143353}, {0, 0, 0,    0, 0, 0.03, 0, (0.288 - 0.498831 I) Sin[y], 0. - 0.03 I,    0. - 0.0519615 I, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.369858, 0,    0, 0, 0. - 0.03 I, 0.576 Cos[y], 0, 0, 0, -0.234164, -0.0357261, 0,    0, 0.0349767, 0.239136, -0.0707859, -0.185737, -0.248295}, {0, 0, 0,    0, 0, 0, -0.03, 0. + 0.03 I, (0.288 - 0.498831 I) Sin[y], 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.244138, -0.0422717, 0. + 0.06 I,    0, 0, 0.576 Cos[y], 0, 0.265868, 0, 0, 0.216359,    0.0211358, -0.0435434, -0.249447, -0.185737, 0.0660567,    0.159894}, {0, 0, 0, 0, 0, 0, 0.0519615, 0. + 0.0519615 I,    0, (0.288 - 0.498831 I) Sin[y], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, -0.0422717, -0.195326, 0, 0, 0, 0, 0.576 Cos[y], -0.0366083, 0,    0, 0.0211358, -0.195326, 0.276945, 0.143353, -0.248295, 0.159894,    0.293945}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.576 Sin[y],    0. - 0.03 I, -0.03, 0, 0, 0, 0, 0, 0, 0, -0.0906385, 0,    0, -0.265868, 0.0366083, -0.0906385, 0, 0, 0.265868, -0.0366083,    0.576 Cos[y], 0, 0, 0. - 0.06 I, 0, 0.0911964, 0, 0.356683, 0,    0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0. + 0.03 I, -0.576 Sin[y], 0,    0.03, -0.0519615, 0, 0, 0, 0, 0, 0, 0.234664, 0.234164, 0, 0, 0,    0.234664, -0.234164, 0, 0, 0, 0.576 Cos[y], 0. + 0.03 I, 0, 0,    0, -0.208851, 0, 0.0722586, -0.286706}, {0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0.03, 0, -0.576 Sin[y], 0. - 0.03 I, 0. - 0.0519615 I, 0, 0, 0,    0, 0, 0, 0.234164, -0.0357261, 0, 0, 0, -0.234164, -0.0357261, 0, 0,    0, 0. - 0.03 I, 0.576 Cos[y], 0, 0, 0.356683, 0, 0.343409, 0,    0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.03,    0. + 0.03 I, -0.576 Sin[y], 0, 0, 0, 0, 0, 0, -0.265868, 0, 0,    0.216359, 0.0211358, 0.265868, 0, 0, 0.216359, 0.0211358,    0. + 0.06 I, 0, 0, 0.576 Cos[y], 0, 0, 0.0722586,    0, -0.00936269, -0.319789}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0.0519615, 0. + 0.0519615 I, 0, -0.576 Sin[y], 0, 0, 0, 0, 0,    0.0366083, 0, 0, 0.0211358, -0.195326, -0.0366083, 0, 0,    0.0211358, -0.195326, 0, 0, 0, 0, 0.576 Cos[y], 0, -0.286706,    0, -0.319789, 0.293945}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0. - 0.265 I, -0.265, 0, 0, 0.0157771, -0.185737, 0.0349767,    0.0435434, -0.276945, 0.0157771, 0.185737, 0.0349767, -0.0435434,    0.276945, 0.0911964, 0, 0.356683, 0, 0, 1.02645, 0, 0, 0. - 0.53 I,    0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0. + 0.265 I, 0,    0, 0.265, -0.458993, -0.185737, 0.205344, -0.239136, -0.249447,    0.143353, 0.185737, 0.205344, 0.239136, -0.249447, 0.143353,    0, -0.208851, 0, 0.0722586, -0.286706, 0, 1.02645, 0. + 0.265 I, 0,    0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.265, 0, 0,    0. - 0.265 I, 0. - 0.458993 I, 0.0349767, -0.239136, -0.0707859,    0.185737, 0.248295, 0.0349767,    0.239136, -0.0707859, -0.185737, -0.248295, 0.356683, 0, 0.343409,    0, 0, 0, 0. - 0.265 I, 1.02645, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, -0.265, 0. + 0.265 I, 0, 0,    0.0435434, -0.249447, 0.185737, 0.0660567,    0.159894, -0.0435434, -0.249447, -0.185737, 0.0660567, 0.159894, 0,    0.0722586, 0, -0.00936269, -0.319789, 0. + 0.53 I, 0, 0, 1.02645,    0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.458993,    0. + 0.458993 I, 0, 0, -0.276945, 0.143353, 0.248295, 0.159894,    0.293945, 0.276945, 0.143353, -0.248295, 0.159894, 0.293945,    0, -0.286706, 0, -0.319789, 0.293945, 0, 0, 0, 0, 1.02645}};

As you can see it is a mixture of symbolic terms in y and floating point numbers.


If I try to compute the characteristic polynomial it fails (it returns 0.)


CharacteristicPolynomial[m, x]
(*0.*)


I believe this to be somehow related to some precision issue, but am unsure how to solve it. Or is it something else?




EDIT 1


If I add the following


m = SetPrecision[m, 20];

It actually runs. But I wonder, if I instead replace y with e.g. 0.01 I do not require this extra step. So what is going on in the background? Is everything converted to machine precision automatically if only floating point numbers appear in an expression?




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...