In general, when solving a 2nd order PDE (such as the wave equation below) for $$u(x,t), \quad x \in(-\infty,\infty), \: t\in (0,\infty)$$ it should be sufficient to provide initial conditions $u(x,0)$ and $\partial_t u(x,0)$. However when I try solve this numerically in Mathematica
NDSolve[{D[u[x, t], {t, 2}] == D[u[x, t], {x, 2}],
u[x, 0] == E^(-x^2), Derivative[0, 1][u][x, 0] == 1}, u, {x, -7, 7}, {t, 0, 4}]
I get the error
NDSolve::bcart: Warning: an insufficient number of boundary conditions
have been specified for the direction of independent variable x.
Artificial boundary effects may be present in the solution.
The only thing I can think of is that when solving numerically I have introduced fictitious new boundaries to the problem by simply specifying a finite range {x,-7,7}. If this is the problem, how do I get around it? (NB the real PDE I'm trying to solve is more complicated and does not describe localized waves).
Also, oddly, if I take out the second I.C.
Derivative[0, 1][u][x, 0] == 1
It doesn't complain but it seems to invent its own boundary conditions and gives the wrong solution.
Edit: the actual PDE I'm solving is of the form $$ -\partial_t^2\phi + \sqrt{\frac{2M}{r}} \left( \frac{3}{2r}\partial_t\phi + 2\partial_t \partial_r \phi \right) + \frac{1}{r^2} \partial_r \left[ r (r-2M)\partial_t \phi\right] -m^2\phi =0,$$
with the initial conditions $\phi(r>>1, t) = 10 - t^{1/3} $ and \partial_r\phi(r>>1,t) = 0$. Any tips regarding the best way to get around the issues above in this case would be amazing.
Comments
Post a Comment