Skip to main content

implicit - Plotting a function with implicitly defined variable


I have a question about plotting a function with an implicitly defined variable. I think the solution should be something similar like here: Define a function with variables linked implicitly but I quite can't get it to work. I apologize if this has been asked for, I tried doing a thorough search before asking. Anyway, I am trying to plot the following function:


$$ u(x,y,t)=\text{sgn}(x+y-t+r(t))\big(e^{-\vert x+y-t+r(t) \vert }-1\big)+r(t)e^{-\vert x+y+r(t)+\ln(\frac{1}{9}r(t)^2-\frac{1}{2}r(t)+1)\vert} $$ where $r(t)$ is implicitly defined with the following equation $$ \ln\vert r(t)\vert-\frac{1}{2}\ln\vert r(t)^2-\frac{9}{2}r(t)+9\vert+\frac{3\sqrt{}{7}}{7}\tan^{-1}\big(\frac{4r(t)-9}{3\sqrt{}{7}}\big)=2t. $$ Ultimately, I would like to use Plot3D for $u(x,y)$ and use Manipulate to see the function at different time steps of $t$. Thank you in advance for your time and help. It's greatly appreciated.


Edit: Here is some mathematica format to make life easier:


Sign[x + y - t + r] (Exp[-Abs[x + y - t + r]] -1) + r*Exp[-Abs[x + y - t + Log[1/9*r^2 - 1/2*r + 1]]]


and


Log[Abs[r]] + 1/2 Log[Abs[r^2 - 9/2 r + 9]] +3 Sqrt[7]/7*ArcTan[(4 r - 9)/(3 Sqrt[7])]

Answer



u[x_?NumericQ, y_?NumericQ, t_?NumericQ] := 
Sign[x + y - t + rr[t]] (Exp[x + y - t + rr[t]] - 1) +
rr[t]*Exp[x + y - t + Log[1/9*rr[t]^2 - 1/2*rr[t] + 1]]
rr[t_] := r /. FindRoot[ 2 t - Log[Abs[r]] + (1/2) Log[Abs[r^2 - 9/2 r + 9]] +
3 Sqrt[7]/7*ArcTan[(4 r - 9)/(3 Sqrt[7])], {r, 1}]

This can plot it, options added for some speed



ContourPlot3D[u[x, y, t], {x, -2, 2}, {y, -2, 2}, {t, -1, 1},
PlotPoints -> 5, MaxRecursion -> 1, Mesh -> None, Contours -> 4]

Mathematica graphics


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...