Skip to main content

algebraic manipulation - How to linearize an expression automatically?


I would like to automatically linearize some long equations in the scope of variational calculus. Here follows an example of what I need to do :


Given two variables $a_1 = q_1 + \delta q_1$ and $a_2 = q_2 + \delta q_2$ and a product $${a_1}^2\, a_2 = {q_1}^2 q_2 + 2q_1q_2\delta q_1 + q_2{\delta q_1}^2 + {q_1}^2\delta q_2 + 2q_1\delta q_1 \delta q_2 + {\delta q_1}^2 \delta q_2$$


I would like to eliminate any variable preceded by the $\delta$ symbol which power is superior to 1 (make it equal to zero), and any product of two variables preceded by the $\delta$ symbol (make the product equal to zero also). So as to obtain :



$${a_1}^2\, a_2 = {q_1}^2 q_2 + 2q_1q_2\delta q_1 + {q_1}^2\delta q_2$$


I first tried the Assumptions options while expanding :


a1 = Subscript[q, 1] + Subscript[\[Delta]q, 1];
a2 = Subscript[q, 2] + Subscript[\[Delta]q, 2];
Expand[a1^2*a2, Assumptions -> Subscript[\[Delta]q, 1]^2 = 0]

Which returned the following :


Set::write: Tag Rule in Assumptions->Subsuperscript[\[Delta]q, 1, 2] is Protected. >>
(Subscript[q, 1] + Subscript[\[Delta]q, 1])^2 (Subscript[q,
2] + Subscript[\[Delta]q, 2])


Of course it didn't work. Truth is that I don't know how to start this... Does someone has any ideas?


I also tried :


a1 = Subscript[q, 1] + Subscript[\[Delta]q, 1];
a2 = Subscript[q, 2] + Subscript[\[Delta]q, 2];
b = Expand[a1^2*a2];
Assuming[Subscript[\[Delta]q, 1]^2 == 0, b]

which didn't work either and returned :


\!\(

\*SubsuperscriptBox[\(q\), \(1\), \(2\)]\
\*SubscriptBox[\(q\), \(2\)]\) +
2 Subscript[q, 1] Subscript[q, 2] Subscript[\[Delta]q, 1] +
Subscript[q, 2]
\!\(\*SubsuperscriptBox[\(\[Delta]q\), \(1\), \(2\)]\) + \!\(
\*SubsuperscriptBox[\(q\), \(1\), \(2\)]\
\*SubscriptBox[\(\[Delta]q\), \(2\)]\) +
2 Subscript[q, 1] Subscript[\[Delta]q, 1] Subscript[\[Delta]q,
2] + \!\(
\*SubsuperscriptBox[\(\[Delta]q\), \(1\), \(2\)]\

\*SubscriptBox[\(\[Delta]q\), \(2\)]\)

Answer



I'd use Series :


f[a1_, a2_] = a1^2 a2;

(Series[f[q1 + \[Epsilon] dq1, q2 + \[Epsilon] dq2], {\[Epsilon], 0, 1}] // Normal)
/. \[Epsilon] -> 1
(* dq2 q1^2 + 2 dq1 q1 q2 + q1^2 q2 *)

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],