Skip to main content

algebraic manipulation - How to linearize an expression automatically?


I would like to automatically linearize some long equations in the scope of variational calculus. Here follows an example of what I need to do :


Given two variables $a_1 = q_1 + \delta q_1$ and $a_2 = q_2 + \delta q_2$ and a product $${a_1}^2\, a_2 = {q_1}^2 q_2 + 2q_1q_2\delta q_1 + q_2{\delta q_1}^2 + {q_1}^2\delta q_2 + 2q_1\delta q_1 \delta q_2 + {\delta q_1}^2 \delta q_2$$


I would like to eliminate any variable preceded by the $\delta$ symbol which power is superior to 1 (make it equal to zero), and any product of two variables preceded by the $\delta$ symbol (make the product equal to zero also). So as to obtain :



$${a_1}^2\, a_2 = {q_1}^2 q_2 + 2q_1q_2\delta q_1 + {q_1}^2\delta q_2$$


I first tried the Assumptions options while expanding :


a1 = Subscript[q, 1] + Subscript[\[Delta]q, 1];
a2 = Subscript[q, 2] + Subscript[\[Delta]q, 2];
Expand[a1^2*a2, Assumptions -> Subscript[\[Delta]q, 1]^2 = 0]

Which returned the following :


Set::write: Tag Rule in Assumptions->Subsuperscript[\[Delta]q, 1, 2] is Protected. >>
(Subscript[q, 1] + Subscript[\[Delta]q, 1])^2 (Subscript[q,
2] + Subscript[\[Delta]q, 2])


Of course it didn't work. Truth is that I don't know how to start this... Does someone has any ideas?


I also tried :


a1 = Subscript[q, 1] + Subscript[\[Delta]q, 1];
a2 = Subscript[q, 2] + Subscript[\[Delta]q, 2];
b = Expand[a1^2*a2];
Assuming[Subscript[\[Delta]q, 1]^2 == 0, b]

which didn't work either and returned :


\!\(

\*SubsuperscriptBox[\(q\), \(1\), \(2\)]\
\*SubscriptBox[\(q\), \(2\)]\) +
2 Subscript[q, 1] Subscript[q, 2] Subscript[\[Delta]q, 1] +
Subscript[q, 2]
\!\(\*SubsuperscriptBox[\(\[Delta]q\), \(1\), \(2\)]\) + \!\(
\*SubsuperscriptBox[\(q\), \(1\), \(2\)]\
\*SubscriptBox[\(\[Delta]q\), \(2\)]\) +
2 Subscript[q, 1] Subscript[\[Delta]q, 1] Subscript[\[Delta]q,
2] + \!\(
\*SubsuperscriptBox[\(\[Delta]q\), \(1\), \(2\)]\

\*SubscriptBox[\(\[Delta]q\), \(2\)]\)

Answer



I'd use Series :


f[a1_, a2_] = a1^2 a2;

(Series[f[q1 + \[Epsilon] dq1, q2 + \[Epsilon] dq2], {\[Epsilon], 0, 1}] // Normal)
/. \[Epsilon] -> 1
(* dq2 q1^2 + 2 dq1 q1 q2 + q1^2 q2 *)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...