Skip to main content

algebraic manipulation - How to linearize an expression automatically?


I would like to automatically linearize some long equations in the scope of variational calculus. Here follows an example of what I need to do :


Given two variables a1=q1+δq1 and a2=q2+δq2 and a product a12a2=q12q2+2q1q2δq1+q2δq12+q12δq2+2q1δq1δq2+δq12δq2


I would like to eliminate any variable preceded by the δ symbol which power is superior to 1 (make it equal to zero), and any product of two variables preceded by the δ symbol (make the product equal to zero also). So as to obtain :



a12a2=q12q2+2q1q2δq1+q12δq2


I first tried the Assumptions options while expanding :


a1 = Subscript[q, 1] + Subscript[\[Delta]q, 1];
a2 = Subscript[q, 2] + Subscript[\[Delta]q, 2];
Expand[a1^2*a2, Assumptions -> Subscript[\[Delta]q, 1]^2 = 0]

Which returned the following :


Set::write: Tag Rule in Assumptions->Subsuperscript[\[Delta]q, 1, 2] is Protected. >>
(Subscript[q, 1] + Subscript[\[Delta]q, 1])^2 (Subscript[q,
2] + Subscript[\[Delta]q, 2])


Of course it didn't work. Truth is that I don't know how to start this... Does someone has any ideas?


I also tried :


a1 = Subscript[q, 1] + Subscript[\[Delta]q, 1];
a2 = Subscript[q, 2] + Subscript[\[Delta]q, 2];
b = Expand[a1^2*a2];
Assuming[Subscript[\[Delta]q, 1]^2 == 0, b]

which didn't work either and returned :


\!\(

\*SubsuperscriptBox[\(q\), \(1\), \(2\)]\
\*SubscriptBox[\(q\), \(2\)]\) +
2 Subscript[q, 1] Subscript[q, 2] Subscript[\[Delta]q, 1] +
Subscript[q, 2]
\!\(\*SubsuperscriptBox[\(\[Delta]q\), \(1\), \(2\)]\) + \!\(
\*SubsuperscriptBox[\(q\), \(1\), \(2\)]\
\*SubscriptBox[\(\[Delta]q\), \(2\)]\) +
2 Subscript[q, 1] Subscript[\[Delta]q, 1] Subscript[\[Delta]q,
2] + \!\(
\*SubsuperscriptBox[\(\[Delta]q\), \(1\), \(2\)]\

\*SubscriptBox[\(\[Delta]q\), \(2\)]\)

Answer



I'd use Series :


f[a1_, a2_] = a1^2 a2;

(Series[f[q1 + \[Epsilon] dq1, q2 + \[Epsilon] dq2], {\[Epsilon], 0, 1}] // Normal)
/. \[Epsilon] -> 1
(* dq2 q1^2 + 2 dq1 q1 q2 + q1^2 q2 *)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]