Skip to main content

plotting - Trying to plot a velocity profile in x-y plane


I have a velocity profile for two liquids on top of each other in a pressure driven channel. The profile is supposed to be parabolic. I plotted them up, but I can't manage to plot them in the x-y plane, it only plots with velocity on the vertical coordinate and y as the horizontal coordinate. Is there any way I can plot them in the x-y plane so that I can clearly see which liquid is ahead of the other in the channel and their parabolic profile? I am also trying to define v1 on a certain interval from y=0 to y=ha, and v2 from y=ha to y=H, so v1 and v2 are sort of piecewise.


Here is my code, this is for mercury(just to start somewhere) and water



v1[y_, μ1_, P_, ha_, H_, μ2_] :=
P*(1/(2*μ1))*y*(y + ((ha^2*(μ2 - μ1) - H*μ2)/(ha*(μ2 - μ1) + H*μ1)))

v2[y_, μ1_, P_, ha_, H_, μ2_] :=
P*(1/(2*μ2))*(y^2 + ((ha^2*(μ2 - μ1) - H*μ2)/(ha*(μ2 - μ1) + H*μ1))* y +
(ha * H/μ1)*( (μ1 - μ2)*(H*μ2 - ha * μ1)/(ha*(μ2 - μ1) + H*μ1 )))

Plot[{v1[y, 0.00157, -6, 1, 2, 0.001], v2[y, 0.00157, -6, 1, 2, 0.001]}, {y, 0, 10}]

Velocity vs y



Profile



Answer



How about using ParametricPlot?


ParametricPlot[{{v1[y, 0.00157, -6, 1, 2, 0.001], 
y}, {v2[y, 0.00157, -6, 1, 2, 0.001], -y}}, {y, 0, 10},
AspectRatio -> 1/GoldenRatio, PlotStyle -> Black, Frame -> True]

Mathematica graphics


For more precise control, you may need two separate ParametricPlots and combine the output using Show[plot1, plot2, PlotRange -> All].


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]