Skip to main content

simplifying expressions - Mathematica rule to express exponentials as multiplication


I'm sorry if this has been asked before, but it is a very simple question and I would imagine it shouldn't be terribly hard for someone that knows to answer.


I'm essentially trying to tell mathematica to not simplify


Exp[x] Exp[y] -> Exp[x+y]


I am using an add on package which is having a hard time with some replacement rules. So, the question is, is it possible to force mathematica to express Exp[x] Exp[y] as is and not simplify it?


A secondary question, which should just be an extension of the first, I would like (Exp[x] Exp[y] )^2 to be replaced as Exp[x]^2 Exp[y]^2 not Exp[2x+2y]! Or even being left as is is ok.



Answer



One possibility is to execute your entire code in some dynamic environment, where certain simplification rules are permanently or temporarily blocked. Here is the generic environment generator:


ClearAll[withBlockedSymbols];
withBlockedSymbols[syms : {__Symbol}] :=
Function[code, Block[syms, code], HoldAll];

We can now produce an environment generator specifically for Exp:


withBlockedExp = withBlockedSymbols[{Exp}]


Now, any code executed inside this wrapper, will not use the automatic simplification rules for Exp, which will be inert inside this wrapper. For example:


withBlockedExp[Hold[Evaluate[Exp[x] Exp[y]]]]

(* Hold[Exp[x] Exp[y]] *)

withBlockedExp[Hold[Evaluate[(Exp[x] Exp[y])^2]]]

(* Hold[Exp[x]^2 Exp[y]^2] *)


The only reason I needed to use Hold@Evaluate was to prevent the simplification happening after the execution exits withBlockedExp. Hold@Evaluate@expr allows us to preserve a final form of expr evaluated inside dynamic environment. If you have less trivial transformations, you will see the utility of withBlockedExp better, since you don't have to use Hold etc. for intermediate steps inside withBlockedExp.


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...