Skip to main content

equation solving - 4th-order Runge-Kutta method to solve a system of coupled ODEs




I am a beginner at Mathematica programming and with the Runge-Kutta method as well. I'm trying to solve a system of coupled ODEs using a 4th-order Runge-Kutta method for my project work.


I have solved it by NDSolve, but I want to solve this by 4th-order Runge-Kutta method. Here is my problem:


Γ = 1.4    
k = 0
z = 0
β = 0.166667

k1 = (d[η] v[η] η (1 - z d[η]) (v[η] - η) - 2 p[η] η (1 - z d[η]) - ϕ[η]^2 d[η]
(1 - z d[η]) - Γ p[η] v[η])/((Γ p[η] - (v[η] - η)^2 d[η] (1 - z d[η])) η)


k2 = (d[η] (1 - z d[η]) (v[η] d[η] (v[η] - 2 η) (v[η] - η) + 2 p[η] η + ϕ[η]^2
d[η]))/((Γ p[η] - (v[η] - η)^2 d[η] (1 - z d[η])) (v[η] - η) η)

k3 = (p[η] d[η] (2 η (v[η] - η)^2 (1 - z d[η]) + Γ v[η] (v[η] - 2 η) (v[η] - η) +
ϕ[η]^2 Γ))/((Γ p[η] - (v[η] - η)^2 d[η] (1 - z d[η])) (v[η] - η) η)

k4 = -((ϕ[η] (v[η] + η))/(η (v[η] - η)))

k5 = -(w[η]/(η (v[η] - η)))


sol = NDSolve[{v'[η] == k1, d'[η] == k2, p'[η] == k3, ϕ'[η] == k4, w'[η] == k5,
v[1] == (1 - β), d[1] == 1/β, p [1] == (1 - β), ϕ[1] == 0.01, w[1] == 0.02},
{v, d, p, ϕ, w}, {η, 0, 1}, MaxSteps -> 30000]

Please guide me how can I solve the above problem with 4th-order Runge-Kutta method, thanks.


code for RK4 method are given in Solving a system of ODEs with the Runge-Kutta method


but how can I apply those codes to my problem...please guide me...



Answer



According to your statement, I think what you need is just 4th-order Runge-Kutta method, and a completely self-made implementation of 4th-order Runge-Kutta method isn't necessary, then the answer from J.M. has shown you the optimal direction:


(* Unchanged part omitted. *)


ClassicalRungeKuttaCoefficients[4, prec_] :=With[{amat = {{1/2}, {0, 1/2}, {0, 0, 1}},
bvec = {1/6, 1/3, 1/3, 1/6}, cvec = {1/2, 1/2, 1}}, N[{amat, bvec, cvec}, prec]]

sol = NDSolve[{v'[η] == k1, d'[η] == k2, p'[η] == k3, ϕ'[η] == k4, w'[η] == k5,
v[1] == (1 - β), d[1] == 1/β, p[1] == (1 - β), ϕ[1] == 0.01, w[1] == 0.02},
{v, d, p, ϕ, w}, {η, 0, 1},
Method -> {"ExplicitRungeKutta", "DifferenceOrder" -> 4,
"Coefficients" -> ClassicalRungeKuttaCoefficients}, StartingStepSize -> 1/10000]


However, what I really want to point out is, despite the above code seems to solve your ODE set up to η = 0.0001, I'm afraid it's not reliable at all:


 {{nl, nr}} = (v /. sol)[[1]]["Domain"];
Plot[{v@n, d@n, p@n, Ï•@n, w@n} /. sol // Evaluate, {n, nl, nr}]

enter image description here


NDSolve by default setting doesn't manage to solve this set of equation, too. It stopped at about η = 0.9576. (I'm not sure what do you mean by saying you have solved it by NDSolve.) I'm not surprised though, your ODEs are non-linear. As for how to solve the ODEs, it's another question. I vote to close this question as a duplicate.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...