Skip to main content

bugs - RegionMeasure is wrong for simple 1D Path


Bug introduced in 11.1




Take the simple path defined by a line through a set of points


pts = {{0, 0}, {0, 1.5}, {0.05, 1.5}, {0.05, 0.5}, {0.1, 0.5}, {0.1,  1.5},
{0.15, 1.5}, {0.15, 0.5}, {0.2, 0.5}, {0.2, 1.5}, {0.25, 1.5}, {0.25, 0.5},
{0.3, 0.5}, {0.3, 1.5}, {0.35, 1.5}, {0.35, 0}}


reg = Line[pts];

This can be visualized using Graphics


Graphics[{Blue, reg}, Axes -> True]

image


Both RegionMeasure and ArcLength should give us the length of the line and in fact it does give us a number


RegionMeasure@reg
(* 7.85 *)

ArcLength@reg
(* 7.85 *)

This is wrong however!


This gives the sequence of the individual arc lengths:


FoldPairList[{Abs@Total[#2 - #1], #2} &, {0, 0}, pts]
(* {0., 1.5, 0.05, 1., 0.05, 1., 0.05, 1., 0.05, 1., 0.05, 1., 0.05, 1., 0.05, 1.5} *)

The sum of this sequence is $9.35$ not $7.85$.


Sanity check: Count the line segments on screen. There are two segments of length $1.5$, seven segments of length $0.05$, and six segments of length $1$. So in total: $2\times1.5 + 7\times0.05 + 6\times1 = 9.35$





I use Mathematica 11.1.1.0 on Mac OS 10.12.6




Edit in response to comments:


When I copy and paste pts from SE I also get $9.35$. Try the following which I used to generate pts in the first place:


pts2 = AnglePath[{{1.5, 90.°}, {0.05, -90.°}, {1, -90.°}, {0.05, 90.°}, {1, 90.°},
{0.05, -90.°}, {1, -90.°},{0.05, 90.°}, {1, 90.°}, {0.05, -90.°}, {1, -90.°},
{0.05, 90.°}, {1, 90.°}, {0.05, -90.°}, {1.5, -90.°}}] //Chop

and check that pts and pts2 are in fact equal



pts == pts2
(* True *)

Now try RegionMeasure@Line@pts2. For me this gives $7.85$. Seems the culprit is AnglePath.




Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],