Skip to main content

dynamic - How can I make a clickable ArrayPlot that returns input?


I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use?



Answer




ArrayPlot is much more than just a simple array like Grid: it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange. These features make it quite complicated to reproduce the same layout and order with Grid.


Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled, HighlightCoordinates, HighlightStyle and HighlightElementFunction.


data = {{Missing["HasSomeMoreData"], GrayLevel[
1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]},
RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel[0.5], RGBColor[
1, 1, 0], RGBColor[1, 0.5, 0]}, {GrayLevel[0], GrayLevel[1],
GrayLevel[0], RGBColor[1, 0, 0]}};

{ArrayPlot[data, DataRange -> {{-4, 0}, {-2, 0}}, FrameTicks -> All],
AnnotatedArrayPlot[data, DataRange -> {{-4, 0}, {-2, 0}},

FrameTicks -> All,
HighlightElementFunction -> (Tooltip[
Button[{Rectangle @@ #2}, Print@{#3, #4}], #4] &)]}

enter image description here


The option HighlightElementFunction recieves the following values:



  • #1 = the actual {$x$, $y$} center coordinates of the selected cell within the graphics;

  • #2 = the lower left and upper right corner coordinates of the selected cell;

  • #3 = the {$i$, $j$} indices of the selected cell within the data array;


  • #4 = the selected element from the input data array.


Examples


{{
ArrayPlot[{{1, 0, 0, 0.3}, {1, 1, 0, 0.3}, {1, 0, 1, 0.7}},
ColorRules -> {1 -> Pink, 0 -> Yellow}, ImageSize -> 100],
ArrayPlot[{{RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[0, 0, 1]},
{RGBColor[0, 0, 1], RGBColor[0, 1, 0]}}, Frame -> True, ImageSize -> 100],
ArrayPlot[{{RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[0, 0, 1]}},
DataRange -> {{1, 3}, {0, 1}}, FrameTicks -> All, ImageSize -> 100],

ArrayPlot[{{RGBColor[0, 1, 0]}}, Frame -> True, FrameTicks -> All,
ImageSize -> 100, DataRange -> {{1, 2}, {0, 1}}],
ArrayPlot[{{RGBColor[0, 1, 0], RGBColor[0, 0, 1]}}\[Transpose],
Frame -> True, FrameTicks -> All, ImageSize -> 70],
ArrayPlot[RandomReal[1, {10, 20}], ColorFunction -> "Rainbow",
ImageSize -> 100]
},{
AnnotatedArrayPlot[{{1, 0, 0, 0.3}, {1, 1, 0, 0.3}, {1, 0, 1, 0.7}},
ColorRules -> {1 -> Pink, 0 -> Yellow}, ImageSize -> 100],
AnnotatedArrayPlot[{{RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[0, 0, 1]},

{RGBColor[0, 0, 1], RGBColor[0, 1, 0]}}, Frame -> True, ImageSize -> 100],
AnnotatedArrayPlot[{{RGBColor[1, 0, 0], RGBColor[0, 1, 0],
RGBColor[0, 0, 1]}}, DataRange -> {{1, 3}, {0, 1}}, FrameTicks -> All, ImageSize -> 100],
AnnotatedArrayPlot[{{RGBColor[0, 1, 0]}}, Frame -> True, FrameTicks -> All,
ImageSize -> 100, DataRange -> {{1, 2}, {0, 1}}],
AnnotatedArrayPlot[{{RGBColor[0, 1, 0], RGBColor[0, 0, 1]}}\[Transpose],
Frame -> True, FrameTicks -> All, ImageSize -> 70],
AnnotatedArrayPlot[RandomReal[1, {10, 20}],
ColorFunction -> "Rainbow", ImageSize -> 100]
}} // Grid


Mathematica graphics


Code


resolveSymbolicPosition[pos_, def_List] := Switch[pos,
Center | Left | Right | {Center} | {Left} | {Right}, {pos,
Last@def},
Top | Bottom | {Top} | {Bottom}, {First@def, pos},
{Center | Left | Right, Center | Top | Bottom, ___}, Take[pos, 2],
None | {None} | {None, None}, {None, None},
_Symbol, def,

_?NumericQ, {pos, Last@def},
{__?NumericQ}, PadRight[pos, 2, def],
_, def];

Options[AnnotatedArrayPlot] = Join[Options@ArrayPlot, {
Method -> "Queued",(* NOTE:
By default "Queued" is used so that long calculations are \
finished before preemption. *)
Enabled -> True,(*PlotRangeClipping\[Rule]True,*)
HighlightCoordinates -> None,

HighlightStyle ->
Directive[EdgeForm@{GrayLevel[0, .5], AbsoluteThickness@1},
FaceForm@GrayLevel[1, .3]],
HighlightElementFunction -> (Tooltip[Rectangle @@ #2, #4] &)}];
AnnotatedArrayPlot[data : {__List}, opts : OptionsPattern[]] :=
Module[{dd, emptyQ = data === {{}}, xr, yr, init, fun, dr, rev, ar,
ops, m, n},
{init, fun, dr, rev, ar} =
OptionValue@{HighlightCoordinates, HighlightElementFunction,
DataRange, DataReversed, AspectRatio};

ops = DeleteCases[
FilterRules[Flatten@{opts}, Options@ArrayPlot], _[
Epilog | DataRange | DataReversed, _]];
{m, n} = {Max[Length /@ data], Length@data};
dd = If[ArrayQ@data, data, PadRight[data, {n, m}, None]];
{xr, yr} =
Switch[rev, Automatic, {False, False}, _List,
PadRight[rev, 2, False], _, PadRight[{rev}, 2, False]];
(*Print@{emptyQ,{m,n},{xr,yr},dd};*)


DynamicModule[{rx, ry, px, py, dx, dy, d, x, y, bx, by, i, j, elem,
update, f = fun, rect},
{rx, ry} = Switch[dr, All | Automatic, {{1, m}, {1, n}}, _, dr];
{dx, dy} =
MapThread[
If[#2 == 1, 1, Abs[Subtract @@ #1]/(#2 - 1)] &, {{rx, ry}, {m,
n}}];
{px, py} = {rx + {-dx, dx}/2, ry + {-dy, dy}/2} +
If[dr === All, 0, Switch[{m, n},
{1, 1}, {{dx, 0}, {dy, 0}},

{1, _}, {{dx, 0}, {dy, dy}/2},
{_, 1}, {{dx, dx}/2, {dy, 0}},
_, {{dx, dx}, {dy, dy}}/2]];
rect = Reverse@{py, px}\[Transpose] - {{0, 0}, {dx, dy}};
d = Switch[{xr, yr}, {True, True}, Reverse, {False, False},
Map@Reverse, {False, True},
Reverse /@ Reverse@# &, {True, False}, Identity]@Transpose@dd;
init =
resolveSymbolicPosition[
init, {Left, Bottom}] /. {Left -> First@ry, Right -> Last@ry,

Bottom -> First@rx, Top -> Last@rx};
update[{None, None}] := ({x, y} = {i, j} = {None, None};
elem = None; {bx, by} = {{}, {}});
update[pos_] := (
{x, y} = pos;
{bx, by} = {{x, y} - {dx, dy}/2, {x, y} + {dx, dy}/2};
{i, j} =
Ceiling@MapThread[
Rescale, {{x, y}, {px, py}, {{1, m}, {1, n}}}, 1];
elem = If[emptyQ, Null, d[[i, j]]];);

update@If[emptyQ, {None, None}, init];
LocatorPane[
Dynamic[{x, y}, update@# &],
EventHandler[
ArrayPlot[dd,
DataRange -> dr, DataReversed -> {xr, yr}, ops,
Epilog -> {
OptionValue@Epilog,
If[emptyQ, {},
Flatten@{OptionValue@HighlightStyle,

Dynamic[
If[x === None, {}, f[{x, y}, {bx, by}, {i, j}, elem]],
TrackedSymbols :> {x, y}]}]
}],
"MouseExited" :> ({x, y} = {None, None}; update@{x, y}),
Method -> OptionValue@Method],
Append[rect, {dx, dy}],
AutoAction -> True, Appearance -> None,
LocatorAutoCreate -> False, Enabled -> OptionValue@Enabled]
]];

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],