Skip to main content

Change variables in differential expressions


I have a fairly complicated differential expression in terms of a variable r and two unknown functions of r, B[r] and n[r]. I want to do a Taylor expansion of this around r=infinity. I want to do this by defining a new variable x=1/r and changing from r to x within my expression, then expanding around x=0.


Say the expression looks (more or less) like



n[r] (3 r B'[r]^2 - 4 B[r] (2 B'[r] + r B''[r]))

How do I turn this from something in terms of {r, n[r], B[r]} to something in terms of {x, n[x], B[x]}?


I'm not sure how to get Mathematica to work through the chain rule and change the dependent variable in the derivatives, and I also frequently get errors along the lines of "1/r is not a valid variable."


EDIT
I've managed to find at least a solution, although I'd imagine Mathematica has far more elegant ways of doing this. Hopefully if there's a cleaner way to do this someone will post it anyway. It would also be nice to have a more general method for changing variables as my way assumes that only up to second derivatives of B[r] and n[r] appear (since that happens to be true for this problem). Anyway, the solution I found was to do a replacement of the type


n[r] (3 r B'[r]^2 - 4 B[r] (2 B'[r] + r B''[r])) /.
{B'[r] -> B'[x]/D[1/x, x],
B''[r] -> D[(B'[x]/D[1/x, x]), x]/D[1/x, x],
n'[r] -> n'[x]/D[1/x, x],

n''[r] -> D[(n'[x]/D[1/x, x]), x]/D[1/x, x],
B[r] -> B[x],
n[r] -> n[x],
r -> 1/x}

i.e., literally just replacing all of the derivatives w.r.t. r with derivatives w.r.t. x one by one, then replacing B[r] and n[r] with B[x] and n[x], then replacing r itself with 1/x. Not pretty but it does work.


FURTHER EDIT
If you want to do something like this, use Maple. Their PDETools has just the right function which I can't seem to find in Mathematica.




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...