i want to solve this equation and plot it solution w.r.t N2 and theta(0)
theta''[x] + 2*theta'[x] - Exp[-2*x]*(N2)^2*(theta[x] - 5) + Q1 == 0
anyone please help
Answer
It is not clear what you want plotted nor how you want the plots done. Neither have you specified the range of the variables that are of interest. The following will need to be tailored once you understand your needs.
Clear["Global`*"]
{xmin, xmax} = {0, 1};
Manipulate[
Module[{eqns1, sol1},
eqns1 =
{theta''[x] + 2*theta'[x] - Exp[-2*x]*N21^2*(theta[x] - 5) + Q11 == 0,
theta[0] == t01, theta'[0] == tp01};
sol1 = ParametricNDSolve[eqns1, theta, {x, xmin, xmax}, N21];
Plot3D[Evaluate[theta[N21][x] /. sol1],
{x, xmin, xmax}, {N21, 0, 5},
AxesLabel -> (Style[#, 14, Bold] & /@ {"x", "N2", "theta"}),
ClippingStyle -> None]],
{{Q11, 5, Q1}, 0, 10, Appearance -> "Labeled"},
{{t01, 0, "theta[0]"}, 0, 10, Appearance -> "Labeled"},
{{tp01, 0, "theta'[0]"}, 0, 10, Appearance -> "Labeled"}]
(* spacer *)
Manipulate[
Module[{eqns2, sol2},
eqns2 =
{theta''[x] + 2*theta'[x] - Exp[-2*x]*N22^2*(theta[x] - 5) + Q12 == 0,
theta[0] == t02, theta'[0] == tp02};
sol2 = ParametricNDSolve[eqns2, theta, {x, xmin, xmax}, t02];
Plot3D[Evaluate[theta[t02][x] /. sol2],
{x, xmin, xmax}, {t02, 0, 5},
AxesLabel -> (Style[#, 14, Bold] & /@ {"x", "theta[0]", "theta"}),
ClippingStyle -> None]],
{{Q12, 5, Q1}, 0, 10, Appearance -> "Labeled"},
{{N22, 5, N2}, 0, 10, Appearance -> "Labeled"},
{{tp02, 0, "theta'[0]"}, 0, 10, Appearance -> "Labeled"}]
(* spacer *)
Comments
Post a Comment