Skip to main content

list manipulation - Filtering beat-to-beat heart rate data


From an experiment, I have a dataset of beat-to-beat heart rate data: a list of the time between each heart beat in [ms]. The data is measured using an infrared optic sensor at the finger tip. The sensor frequently misinterprets a slight movement of the finger as an heart beat. Data therefore often looks somewhat like this:


{1000, 1000, 1000, 1000, 500, 500, 1000, 1000, 1000, 600, 400, 1000}

In this example, one can easily see that the 5th and 6th element should be one; same for the 10th and 11th. However, in real life the data looks more like this:


data = {981, 870, 1099, 1105, 650, 397, 920, 917, 1015, 1085, 210, 344, 457,
950}


where the 5-6 (650, 397) and 11-12-13 (210, 344, 457) should be taken together. It is easy to just delete the incorrect data by using something like:


DeleteCases[data,
x_ /; x < Mean[data] - StandardDeviation[data] ||
x > Mean[data] + StandardDeviation[data]]

...but I want to make a function that recognizes when multiple elements should be added to one.


One could just add every two, three or four (=length) elements and select the Cases where the result lies (for example) in the range Mean[data]±StandardDeviation[data]:


length = 2;
Position[Total[data[[# ;; # + length]]] & /@
Range[Length[data] - length],

x_ /; x > Mean[data] - StandardDeviation[data] &&
x < Mean[data] + StandardDeviation[data]]

Result:


{{5}, {11}, {12}}

This gives me an idea of where the incorrect data is. Unfortunately, after having this result, I don't know what to do with it... For example, I get confused by the fact that elements 11-12-13 return 2 cases of incorrect data when I use length=1. And maybe there are more (simple) ways to filter this data.


Question: can anyone give me a kick-start?


Edit: You can download an example of actual data here. Just Flatten[Import[filename,"Table"]]




Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...