Skip to main content

differential equations - How to solve PDE with periodic and anti-periodic b.c.?


I need to solve the PDE for a complex function $A(x,t)=A_r(x,t)+iA_i(x,t)$


eq = D[A[x, t], t] + 1/4*Conjugate[A[x, t]]*A[x, t]^2 - D[A[x, t], {x, 2}] - 2*A[x, t] == 0;


over $[-L,L]$ and $[0,t_\text{max}]$. The equation is subject to a random initial condition and the boundary conditions as follows: $A_r(-L,t)=A_r(L,t)$ and $A_i(-L,t)=-A_i(L,t)$


L = 30; tmax = 30;
ini[x_] = 1/10*BSplineFunction[RandomReal[{-1, 1}, 20], SplineClosed -> True, SplineDegree -> 5][x/(2*L)];
ibcs = {Re[A[-L, t]] == Re[A[L, t]], Im[A[-L, t]] == -Im[A[L, t]], A[x, 0] == ini[x]};

Then, I solve it with NDSolve


sol = NDSolve[{eq, ibcs}, A, {x, -L, L}, {t, 0, tmax}, 
Method -> {"MethodOfLines",
"SpatialDiscretization" -> {"TensorProductGrid",

"MinPoints" -> 201, "MaxPoints" -> 201,
"DifferenceOrder" -> "Pseudospectral"}}, AccuracyGoal -> 20]

But I received the error



NDSolve::bcedge: Boundary condition Im[A[-30,t]]==-Im[A[30,t]] is not specified on a single edge of the boundary of the computational domain.>>



I didn't understand the error. Why the boundary conditions (bcs) must be specified on a single edge. Should not we set the bcs at both sides? Any suggestion is highly appreciated.


Thank for @xzczd's comment:


I just knew that NDSolve could not handle anti-periodic bc. Yes, the equation can be solved with a periodic bc:



periodbcs = {A[-L, t] == A[L, t], A[x, 0] == ini[x]}

But the solution should be incorrect because the solution is a real function by observing its imaginary part.


 ContourPlot[Evaluate[Im[A[x, t] /. sol]], {x, -L, L}, {t, 0, tmax}, 
Contours -> 10, PlotRange -> All, PlotLegends -> Automatic,
ColorFunction -> Hue, FrameLabel -> {"x", "t"}, PlotLabel -> "Ai", ImageSize -> 200]

enter image description here


Response to @user64494's comment:


Yes, I can split the real and imaginary parts by writing the 2nd term as



$(A^\ast A)A=\vert A\vert^2A=(A_r^2+A_i^2)(A_r+i A_i)=A_r^3+A_i^2A_r+i(A_r^2A_i+A_i^3)$


Then the equation can be split into


eqs = {D[Ar[x, t], t] + 1/4*(Ar[x, t]^3+Ai[x, t]^2*Ar[x, t]) - D[Ar[x, t], {x, 2}] - 2*Ar[x, t] == 0,
D[Ai[x, t], t] + 1/4*(Ai[x, t]^3+Ar[x, t]^2*Ai[x, t]) - D[Ai[x, t], {x, 2}] - 2*Ai[x, t] == 0};

But I don't know how to make an anti-periodic initial condition (Ai[x, 0] = inianti[x]) to be consistent with the boundary condition.


ibcs = {Ar[-L, t] == Ar[L, t], Ai[-L, t] == -Ai[L, t], Ar[x, 0] == ini[x], Ai[x, 0] = inianti[x]};

Answer




The approach here is fully applicable to your problem. Anyway, the corresponding coding isn't trivial, so let me give an answer.



We start from the splitted equation system because Re, Im, Conjugate isn't that convenient for subsequent coding. The form of b.c.s are slightly modified, because both periodic b.c. and anti-periodic b.c. are set with one-sided difference formula in this method (which is different from using PeriodicInterpolation of NDSolve`FiniteDifferenceDerivative) and we need 4 constraints in x direction in total:


Clear[ini, inianti, Ai]
eqs = {D[Ar[x, t], t] + 1/4 (Ar[x, t]^3 + Ai[x, t]^2 Ar[x, t]) - D[Ar[x, t], {x, 2}] -
2 Ar[x, t] == 0,
D[Ai[x, t], t] + 1/4 (Ai[x, t]^3 + Ar[x, t]^2 Ai[x, t]) - D[Ai[x, t], {x, 2}] -
2 Ai[x, t] == 0};
ic = {Ar[x, 0] == ini[x], Ai[x, 0] == inianti[x]};
bc = {Ar[-L, t] == Ar[L, t], Ai[-L, t] == -Ai[L, t],
Derivative[1, 0][Ar][-L, t] == Derivative[1, 0][Ar][L, t],
Derivative[1, 0][Ai][-L, t] == -Derivative[1, 0][Ai][L, t]};




Derivative[1, 0][Ar][-L, t] == Derivative[1, 0][Ar][L, t] is added because periodic b.c. implies the solution is smooth enough across the boundary, but frankly speaking, I'm not familiar with anti-periodic b.c. and not sure if Derivative[1, 0][Ai][-L, t] == -Derivative[1, 0][Ai][L, t] is correct, but do remember a supplement for derivative of x of Ai at the boundary is necessary, or a particular solution won't be determined.



The i.c.s are simply generated randomly, they don't satisfy the b.c.s of course, but this should not be a big deal because the i.c.s will be slightly modified at the boundary to satisfy the b.c.s in the upcoming disretization step. (For more information about handling inconsistency between i.c. and b.c., you may want to check this post. )


L = 30; tmax = 30;
SeedRandom[1];
ini = ListInterpolation[RandomReal[{-1, 1}, 20], {{-L, L}}];
inianti = ListInterpolation[RandomReal[{-1, 1}, 20], {{-L, L}}];


Finally, discretize the PDE system to an ODE system and solve, with the help of pdetoode:


points = 200; domain = {-L, L}; difforder = 4;
grid = Array[# &, points, domain];
(* Definition of pdetoode isn't included in this code piece,
please find it in the link above. *)
ptoofunc = pdetoode[{Ar, Ai}[x, t], t, grid, difforder];
odebc = Map[ptoofunc, bc, {2}]
del = #[[2 ;; -2]] &;
odeic = del /@ ptoofunc@ic;

ode = del /@ ptoofunc@eqs;
sollst = NDSolveValue[{ode, odeic, odebc},
Table[v[x], {v, {Ar, Ai}}, {x, grid}], {t, 0, tmax}];
{solAr, solAi} = rebuild[#, grid, -1] & /@ sollst;

Check:


Plot[{solAr[-L, t], solAr[L, t], solAi[-L, t], solAi[L, t]}, {t, 0, tmax}, 
PlotStyle -> {Automatic, {Thick, Red, Dashed}, Dotted, Dotted}]

enter image description here



With[{d = Derivative[1, 0]}, 
Plot[{d[solAr][-L, t], d[solAr][L, t], d[solAi][-L, t], d[solAi][L, t]}, {t, 0, 2},
PlotStyle -> {Automatic, {Thick, Red, Dashed}, Dotted, Dotted}, PlotRange -> All]]

enter image description here





Since v12, "FiniteElement" method can handle nonlinear PDE, so it's possible to solve the problem with PeriodicBoundaryCondition in principle. Nevertheless, the v12 solution is suspicious:


test = NDSolveValue[{eqs, ic, 
PeriodicBoundaryCondition[Ar[x, t], x == L, Function[x, x - 2 L]],

PeriodicBoundaryCondition[-Ai[x, t], x == L, Function[x, x - 2 L]]}, {Ar, Ai}, {t,
0, tmax}, {x, -L, L},
Method -> {"MethodOfLines",
"SpatialDiscretization" -> {"FiniteElement",
"MeshOptions" -> "MaxCellMeasure" -> 0.01}}]; // AbsoluteTiming

With[{d = Derivative[1, 0]},
Plot[{d[test[[1]]][-L, t], d[test[[1]]][L, t], d[test[[2]]][-L, t],
d[test[[2]]][L, t]}, {t, 0, 2},
PlotStyle -> {Automatic, {Thick, Red, Dashed}, Dotted, Dotted}, PlotRange -> All]]


enter image description here


It's clear Derivative[1, 0][Ar][-L, t] == Derivative[1, 0][Ar][L, t] isn't satisfied. (Zero NeumannValue is set at $x=-L$? ) I guess the underlying issue may be related to that in this post.


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.