Skip to main content

mesh - How to draw the shape of a 2D, 2nd order, element of an ElementMesh


I just want to create a drawing of the shape of 2nd order, two dimensional, finite element like a TriangleElement.



  • Something like mesh["Wireframe"] don't work because gives only a first order approximation of the mesh.

  • MeshRegion@ToElementMesh[...] don't work because gives some linear boundary instead of curved boundary.


  • Something like ToElementMesh@ToBoundaryMesh["Coordinates"->..., "BoundaryElements"->{LineElement[{{1,2,3},...}] don't work because... I don't know :)


I tried this:


Manipulate[Module[{mesh, g},
mesh = ToElementMesh["Coordinates" -> pts,
"MeshElements" -> {TriangleElement[{{1, 3, 5, 2, 4, 6}}]}];
g = RegionPlot[TrueQ@ElementMeshRegionMember[mesh, {x, y}],
Evaluate@Prepend[(Mean[#] - {-1.2, 1.2}/2*Subtract @@ # &)@MinMax@pts[[All, 1]], x],
Evaluate@Prepend[(Mean[#] - {-1.2, 1.2}/2*Subtract @@ # &)@MinMax@pts[[All, 2]], y],
Prolog -> {

PointSize[Large],
Red, Point@pts[[{1, 3, 5}]],
Blue, Point@pts[[{2, 4, 6}]]
},
PlotPoints -> 40, MaxRecursion -> 1,
ImageSize -> 300, Frame -> None, PlotRangePadding -> Scaled[.01],
Mesh -> Full,
PlotRange -> Full, PlotRangeClipping -> False,
PerformanceGoal -> "Quality"
]

],
{{pts, {{0, 0}, {4/7, -(1/39)}, {1, 1/4}, {7/15, 3/10}, {1/4, 2/3}, {-(1/39), 2/5}}},
Locator, LocatorAutoCreate -> False}
]

Mathematica graphics


but the result is unsatisfactory and too slow.


I hope to find a fast-enough way accurately represent a complete 2D 2nd order mesh.


Any idea?



Answer




Here is a way to do it. We use BezierCurve for the edges.


First we get the ordering of the egdes. And put the mid side node in the middle.


Needs["NDSolve`FEM`"]
triEdges = #[[{1, 3, 2}]] & /@
MeshElementBaseFaceIncidents[TriangleElement, 2];
quadEdges = #[[{1, 3, 2}]] & /@
MeshElementBaseFaceIncidents[QuadElement, 2];

This function gets us the edges of the elements:


ClearAll[getEdges]

getEdges[ele_TriangleElement] :=
Join @@ (ElementIncidents[ele][[All, #]] & /@ triEdges)
getEdges[ele_QuadElement] :=
Join @@ (ElementIncidents[ele][[All, #]] & /@ quadEdges)
getEdges[ele_List] := getEdges /@ ele

The next does the interpolation:


Clear[interpolatingQuadBezierCurve];
interpolatingQuadBezierCurve[pts_List] /; Length[pts] == 3 :=
BezierCurve[{pts[[1]], 1/2 (-pts[[1]] + 4 pts[[2]] - pts[[3]]),

pts[[3]]}];
interpolatingQuadBezierCurve[ptslist_List] :=
interpolatingQuadBezierCurve /@ ptslist;
interpolatingQuadBezierCurveComplex[coords_, indices_] :=
interpolatingQuadBezierCurve[Map[coords[[#]] &, indices]]

Try this with an example:


mesh = ToElementMesh[Disk[], "MaxCellMeasure" -> 1, 
PrecisionGoal -> 1];
Show[

mesh["Wireframe"["MeshElementStyle" -> EdgeForm[Green]]],
mesh["Wireframe"["MeshElement" -> "PointElements",
"MeshElementIDStyle" -> Blue,
"MeshElementStyle" -> Directive[PointSize[0.02], Red]]],
Graphics[{interpolatingQuadBezierCurveComplex[
mesh["Coordinates"], #] & /@
Join @@ getEdges[mesh["MeshElements"]]}]
]

Looks good:



enter image description here


Green is the linear mesh, black the second order mesh. Next, we try this with your mesh:


mesh = ToElementMesh[
"Coordinates" -> {{0, 0}, {1, 1/4}, {1/4,
2/3}, {4/7, -1/39}, {7/15, 3/10}, {-1/39, 2/5}},
"MeshElements" -> {TriangleElement[{{1, 2, 3, 4, 5, 6}}]}];
Show[
mesh["Wireframe"["MeshElementStyle" -> EdgeForm[Green]]],
mesh["Wireframe"["MeshElement" -> "PointElements",
"MeshElementIDStyle" -> Blue,

"MeshElementStyle" -> Directive[PointSize[0.02], Red]]],
Graphics[{interpolatingQuadBezierCurveComplex[
mesh["Coordinates"], #] & /@
Join @@ getEdges[mesh["MeshElements"]]}]
]

enter image description here


And here is the Manipulate


Manipulate[
Module[{mesh},

mesh = ToElementMesh["Coordinates" -> pts,
"MeshElements" -> {TriangleElement[{{1, 2, 3, 4, 5, 6}}]}];
Graphics[
MapThread[
interpolatingQuadBezierCurveComplex[mesh["Coordinates"], #] &,
getEdges[mesh["MeshElements"]]]
]
], {{pts, {{0, 0}, {1, 1/4}, {1/4, 2/3}, {4/7, -1/39}, {7/15,
3/10}, {-1/39, 2/5}}}, Locator, LocatorAutoCreate -> False}]


enter image description here


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...