Skip to main content

plotting - Testing the accuracy of numerically computed derivatives


I am calculating approximate derivatives by using NDSolve`FiniteDifferenceDerivative, so this works:


 Subscript[Der, i_][yyy_] := 
Module[{xx},
xx = Length[yyy];
NDSolve`FiniteDifferenceDerivative[

Derivative[i],
N[yyy],
DifferenceOrder -> 2] @ "DifferentiationMatrix"
// Normal // Developer`ToPackedArray // SparseArray];

xi = 1.;
xf = -1;
yy = 100;
xgrid = Table[xi + i (xf - xi/yy), {i, 0, yy}];


(Der1 = Subscript[Der, 1][xgrid]) // MatrixForm;

numerical = Der1.Exp[-xgrid^2];
exact = -2*xgrid*Exp[-xgrid^2];

diff = numerical - exact;
diffError = yy^2*diff

ListLinePlot[yy^2 Abs[diff]]


I want to show my solution is accurate by demonstrating that the difference between the numerical solution and the exact solution goes to zero as $\mathtt{yy}^{-2}$. For this I want to plot $\mathtt{yy}^2 |\mathrm{numerical} - \mathrm{exact}|$ for different values of $\mathtt{yy}$ but am not sure how to do this.


The code gives reasonable values for the differences, though I am not sure how to plot them for different $\mathtt{yy}$ values.


I obtained the follow plot from the code shown above.


accuracytest



Answer



xi = -1.;
xf = 1;
xgrid[yy_] := Range[xi, xf, (xf - xi)/yy]

Subscript[Der, i_][yyy_] := Module[{xx}, xx = Length[yyy];

NDSolve`FiniteDifferenceDerivative[Derivative[i], N[yyy],
DifferenceOrder -> 2]@"DifferentiationMatrix" // Normal //
Developer`ToPackedArray // SparseArray];

Der1[yy_] := Subscript[Der, 1][xgrid[yy]]
numerical[yy_] := Der1[yy].Exp[-xgrid[yy]^2]
exact[yy_] := -2*xgrid[yy]*Exp[-xgrid[yy]^2]
diff[yy_] := numerical[yy] - exact[yy]

yyvals = {100, 300, 1000};


ListLinePlot[
Table[Transpose[{xgrid[yy], yy^2 Abs[diff[yy]]}], {yy, yyvals}],
PlotRange -> All, PlotLegends -> StringTemplate["yy = ``"] /@ yyvals]

enter image description here


Max[diff[100]] / Max[diff[1000]] = 99.9756

This means the error ~ 1/yy^2. For better see this scaling low one can use logarithmic scale:


ListLinePlot[

Table[Transpose[{xgrid[yy], Abs[diff[yy]]}], {yy, yyvals}],
PlotRange -> All, PlotLegends -> StringTemplate["yy = ``"] /@ yyvals,
ScalingFunctions -> "Log", Frame -> True]

enter image description here


NonlinearModelFit[Table[{yy, Max[diff[yy]]}, {yy, 100, 10000, 500}], 
a + b/x^2, {a, b}, x]


Blockquote




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...