Skip to main content

differential equations - Return partial result when MemoryConstrained aborts NDSolve


I use NDSolve to solve a large set (~400) of coupled ODEs. Sometimes, the memory (~4GB) gets filled up, and my computer becomes impossible to work with, because it spends too much time writing to swap and the process can only be killed violently by the OS.



I circumvent this by using MemoryConstrained, but when the solver reaches the memory limit it is simply aborted and does not return the solution it obtained so far. Is there a way to obtain this solution (much like what happens when the solver encounters a singularity or reaches MaxSteps)?


Note: using a hack of the form


 StepMonitor :> If[MemoryInUse[]>...,...]

results in serious computational overhead.



Answer



Borrowing from an example of WhenEvent from the documentation in which a Button is used to stop the integration, I came up with this.


ClearAll[ndsolveMemConstrained];
SetAttributes[ndsolveMemConstrained, HoldFirst];
ndsolveMemConstrained::mlim = "Memory used `` exceeded limit ``.";

ndsolveMemConstrained[(nd_: NDSolve | NDSolveValue)[eqns_, rest___], bytes_] :=
Module[{sol, stop, task, mstart},
mstart = MemoryInUse[];
stop = False;
task = RunScheduledTask[
stop = (ndsolve`mem = MemoryInUse[] - mstart) > bytes,
0.2];
sol = nd[Append[eqns,
WhenEvent[stop,
Message[ndsolveMemConstrained::mlim, ndsolve`mem, bytes];

"StopIntegration"]],
rest];
RemoveScheduledTask[task];
sol]

As a baseline, here is an example DE from the documentation:


NDSolveValue[{D[u[t, x], t, t] == D[u[t, x], x, x], 
u[0, x] == Exp[-10 x^2], Derivative[1, 0][u][0, x] == 0,
u[t, -10] == u[t, 10]}, u, {t, 0, 100}, {x, -10, 10},
Method -> "StiffnessSwitching"] // AbsoluteTiming


(* {10.969550,InterpolatingFunction[{{0.,100.},{\[Ellipsis],-10.,10.,\[Ellipsis]}},<>]} *)

When the memory is not exceeded, it takes about the same amount of time:


ndsolveMemConstrained[
NDSolveValue[{
D[u[t, x], t, t] == D[u[t, x], x, x], u[0, x] == Exp[-10 x^2],
Derivative[1, 0][u][0, x] == 0, u[t, -10] == u[t, 10]},
u, {t, 0, 100}, {x, -10, 10}, Method -> "StiffnessSwitching"],
8000000] // AbsoluteTiming

ndsolve`mem

(* {10.962278, InterpolatingFunction[{{0., 100.}, {..., -10., 10.,...}}, <>]} *)
(* 6992160 *)

When the memory limit is exceeded, there is frequently an extra warning message generated. I assume it has to do with where the solver is when stop is checked. (It's odd that it doesn't always produce the convergence warning.)


ndsolveMemConstrained[
NDSolveValue[{
D[u[t, x], t, t] == D[u[t, x], x, x], u[0, x] == Exp[-10 x^2],
Derivative[1, 0][u][0, x] == 0, u[t, -10] == u[t, 10]},

u, {t, 0, 100}, {x, -10, 10}, Method -> "StiffnessSwitching"],
4000000] // AbsoluteTiming
ndsolve`mem


NDSolveValue::evcvmit: Event location failed to converge to the requested accuracy or precision within 100 iterations between t = 56.32617731294334and t = 56.50060870314276. >>


ndsolveMemConstrained::mlim: Memory used 4158544 exceeded limit 4000000.



(* {5.595887, InterpolatingFunction[{{0., 56.3262}, {..., -10., 10.,...}}, <>]} *)
(* 4047584 *)


You can also monitor memory usage if the following is executed before ndsolveMemConstrained.


Dynamic @ ndsolve`mem

(* 6992160 *)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...