Skip to main content

How to define a pure function with a Module?


I was not able to use a self defined (using Module and For loops) piecewise function to fit data. It seems that the problem is that I have to define a pure function. I would like to learn how to define pure functions in the following example using Modules and For loops. Please help.


So let's consider a problem - we have some data, and a self defined piecewise function f[z] that goes exactly through all the data points. LinearModelFit fitting data with f[z] should return value parameter equal to 1.


Disclaimer: it will return a constant instead (basically will not understand what is the f[z] provided and will use a constant to fit the data).


However, in the second part of the following example I will define a function g[z] (which will be equal to f[z]) using Piecewise[] and it will work perfectly (LinearModeFit will return 1).


So, once again, I would like to write f[z] using Module and For loops so that it works in LinearModelFit the way g[z] does.


x = Table[x + Random[], {x, 1, 5}];
y = 2 # + Random[] & /@ x;
data = Transpose@{x, y};



fpiecewise[x_, xlist_, ylist_] := Module[{i = 1},
For[i = 1, i < Length[xlist], i++, If[x <= xlist[[i]], Break[]]];
Return[ylist[[i]]]
];
f[z_] := fpiecewise[z, x, y];

LinearModelFit[data, f[z], z];
ListPlot[{{x, % /@ x} // Transpose, data}, Joined -> True]


Part1



x1 = Join[{0.}, x];
g[z_] := Piecewise[
Table[{y[[i]], x1[[i]] < z <= x1[[i + 1]]}, {i, 1, Length[x]}]]
LinearModelFit[data, g[z], z];
ListPlot[{{x, % /@ x} // Transpose, data}, Joined -> True]

Part2




Answer



As swish pointed out:


fpiecewise[x_**?NumberQ**, xlist_, ylist_] := Module[{i = 1},
For[i = 1, i < Length[xlist], i++, If[x <= xlist[[i]], Break[]]];
Return[ylist[[i]]]
];

f[z_] := fpiecewise[z, x, y];

LinearModelFit[data, f[z], z];


f[z] defined this way will do the job as successfully as g[z].


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...