I have the summation of $N$ matrices which are weighted by some weighing factors (parameters):
$$M_\alpha=\sum_{i=1}^N \alpha_i M_i$$
$$d_{\alpha}=\arg\max_{rows} M_\alpha$$
The ideal vector $d$ is given as $$d=\{1,...,1,2,...,2,3,...,3,...,n,...,n\}$$ where $n$ is the number of columns of the matrix $M_\alpha$, the number of 1s, 2s etc. in $d$ is equal to $m/n$, where $m$ is the total number of rows of matrix $M_\alpha$.
The problem is the following:
$$\max_{\alpha}\sum_{i=1}^m \delta(d(i)-d_{\alpha}(i)))$$
where $\delta$ is the kronecker delta function.
Let $M_1,M_2,M_3$, ($N=3$ different matrices), be all of size $m\times n=40\times 4$ as follows:
M1={0.609955572743010, 0.00170731526668555, 0.000650398480689995, 0.387686713509614, 0.352128847651293, 0.00107332837222463, 0.00383334455135158, 0.642964479425131, 0.994077279324872, 1.25013564041093*10^-05, 1.83150969667110*10^-05, 0.00589190422175699, 0.0541834841056487, 0.00304138308773895, 3.86671456986247*10^-05, 0.942736465660914, 0.999697788212839, 9.55623916740011*10^-08, 6.39890357522832*10^-08, 0.000302052235733568, 0.204343973316372, 0.00221136766252747, 0.0439234933355582, 0.749521165685542, 0.976473913048648, 0.000266115805342264, 0.000205472832931933, 0.0230544983130776, 0.658987200165756, 0.000564938489485245, 0.0129346609515954, 0.327513200393164, 0.993898690171526, 1.90808582766092*10^-05, 1.93454968657929*10^-05, 0.00606288347333146, 0.147358674938040, 0.00179172380408377, 0.0195203233074620, 0.831329277950414, 1.46348315513591*10^-14, 0.999999850064741, 4.99352198389998*10^-08, 1.00000024953831*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 7.15056020814627*10^-07, 0.998855577466965, 1.39432952241941*10^-06, 0.00114231314749163, 3.03631322330502*10^-05, 0.928119733089346, 3.39383500856185*10^-06, 0.0718465099434118, 3.43825818213316*10^-13, 0.999999187866704, 3.33335184201576*10^-08, 7.78799433878354*10^-07, 1.64803181035325*10^-14, 0.999999866633161, 3.33667955721732*10^-08, 1.00000026610674*10^-07, 1.40028993444907*10^-14, 0.999999849999950, 5.00000111369661*10^-08, 1.00000024947352*10^-07, 1.64771550590879*10^-14, 0.999999851056829, 4.89431289795013*10^-08, 1.00000025053039*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 4.85269640409878*10^-14, 0.999999705357355, 3.33995555767818*10^-08, 2.61243040675023*10^-07, 9.09970886275449*10^-07, 8.80847451325440*10^-07, 0.998898067468975, 0.00110014171268767, 0.000141156216087768, 0.000103304767788300, 0.801897371774159, 0.197858167241965, 0.000354646236379861, 0.000259229276184516, 0.979077950299900, 0.0203081741875359, 0.00524216456740572, 3.82038758928901*10^-05, 0.933811067627086, 0.0609085639296154, 0.0934557418369791, 0.00201358072840893, 0.181879061959566, 0.722651615475046, 1.75842997635072*10^-06, 1.69242866594236*10^-06, 0.998472701114213, 0.00152384802714525, 0.000122526265236807, 0.0114968681963201, 0.718905726923267, 0.269474878615176, 3.16860720581802*10^-05, 1.62720917104366*10^-05, 0.994528527213605, 0.00542351462262581, 0.00192738945529482, 7.70759733587586*10^-06, 0.966949633373471, 0.0311152695738981, 1.62865705458289*10^-11, 1.47240955795276*10^-11, 0.999995561266735, 4.43870225434399*10^-06, 0.000126921039929180, 0.00441070141492391, 0.386257612728005, 0.609204764817142, 0.450902449976079, 0.000147286721066355, 4.15927459758263*10^-07, 0.548949847375394, 0.898623991867438, 2.75637762942201*10^-05, 6.46357512424893*10^-06, 0.101341980781144, 1.13673339728006*10^-05, 0.00534149297450797, 0.0431760667261930, 0.951471072965326, 2.17946210105090*10^-06, 0.0438464450864378, 0.00191444464716315, 0.954236930804298, 0.104133865070695, 0.00233635732000811, 0.136379322163522, 0.757150455445775, 0.298595450162043, 0.309137610495699, 0.0971665472242380, 0.295100392118019, 2.77743921924301*10^-05, 0.000272757074581966, 0.00461735316655282, 0.995082115366673, 0.398257110769054, 0.00149912836234743, 0.0431012466209110, 0.557142514247688, 0.341854869609261, 0.00113627516668155, 0.0284582791264737, 0.628550576097584}
M2={0.997997690879728, 0.000399238009679442, 3.16999992360244*10^-05, 0.00157137111135670, 0.668594080378788, 0.000186789531392926, 0.000283770266878297, 0.330935359822941, 0.999999286473402, 5.93571435328038*10^-08, 5.26142963266451*10^-08, 6.01555157717163*10^-07, 0.330951619597146, 0.000186222910665124, 5.45437398752072*10^-07, 0.668861612054790, 0.999979147680591, 4.96810286608811*10^-08, 3.91877816253543*10^-08, 2.07634505990934*10^-05, 0.211201317605335, 0.00460600427667896, 0.0737934133042877, 0.710399264813699, 0.996332512113470, 6.04225168178655*10^-06, 6.96384038056380*10^-06, 0.00365448179446815, 0.975503800955962, 0.000259520870359853, 0.000308614204583400, 0.0239280639690948, 0.999469335416755, 1.40398540348861*10^-07, 1.95284879485547*10^-07, 0.000530328899825564, 0.409719303511683, 0.00207618094675648, 0.00238898574355966, 0.585815529798001, 1.65476478644032*10^-14, 0.999999866498967, 3.35009895669847*10^-08, 1.00000026597255*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 1.50675964375090*10^-09, 0.999950882038016, 2.13978503885356*10^-06, 4.69766701860591*10^-05, 0.000146379417384968, 0.983039995056467, 0.000101958004732298, 0.0167116675214155, 1.64634462009615*10^-14, 0.999999866666555, 3.33334023306566*10^-08, 1.00000026614014*10^-07, 1.88003694055318*10^-14, 0.999999859597872, 4.04020837601738*10^-08, 1.00000025907144*10^-07, 1.63686594466428*10^-14, 0.999999850960123, 4.90398355968660*10^-08, 1.00000025043368*10^-07, 1.40000007835072*10^-14, 0.999999849999949, 5.00000124736750*10^-08, 1.00000024947352*10^-07, 1.64634162951276*10^-14, 0.999999866666614, 3.33333432220560*10^-08, 1.00000026614020*10^-07, 1.77197769335975*10^-14, 0.999999863824475, 3.61754807489410*10^-08, 1.00000026329805*10^-07, 6.24802819657261*10^-08, 6.54206918903079*10^-08, 0.999695805624635, 0.000304066474391365, 4.17629238413074*10^-05, 9.17180023574064*10^-05, 0.941419169889299, 0.0584473491845027, 4.45569337408179*10^-09, 3.09511090552630*10^-09, 0.999930293436625, 6.96990125708923*10^-05, 4.88549459064749*10^-07, 2.51982994299512*10^-07, 0.999330790505086, 0.000668468962460487, 0.0481570811375852, 0.00336430981574971, 0.575753152635769, 0.372725456410896, 2.90593552775306*10^-05, 2.97053505468664*10^-05, 0.993415829090078, 0.00652540620409724, 0.000259682967771992, 0.000275271924348368, 0.979056459214500, 0.0204085858933792, 8.05701380692905*10^-10, 4.92679259518032*10^-10, 0.999969857731615, 3.01409700049762*10^-05, 1.55575333355898*10^-08, 9.46236836499764*10^-09, 0.999868311178764, 0.000131663801334523, 2.05397179809771*10^-14, 2.13593440127015*10^-14, 0.999999900000016, 9.99999424647564*10^-08, 2.27734235440637*10^-12, 2.44167103783077*10^-12, 3.48780511272915*10^-12, 0.999999999991793, 0.00486351254210242, 5.31825160156174*10^-08, 3.34626784870301*10^-08, 0.995136400812703, 0.132452981454285, 0.000178075607065361, 6.95495341114794*10^-05, 0.867299393404539, 6.71378008007283*10^-08, 8.08532794505720*10^-08, 1.07436677324882*10^-07, 0.999999744572242, 2.16271866056670*10^-05, 0.00787511307003729, 0.000241425939162816, 0.991861833804194, 0.249096594065283, 0.00454779747299679, 0.0873186983978455, 0.659036910063874, 0.0287821174289005, 0.0916679032413869, 0.00575134721842477, 0.873798632111288, 1.03497559692374*10^-13, 2.18456032445438*10^-13, 1.58943257903254*10^-13, 0.999999999999519, 0.620115420812621, 0.000248272611226680, 0.00542472006012683, 0.374211586516025, 0.488061381134680, 0.000785818969734454, 0.0221437618269132, 0.489009038068673}
M3={0.997251492885447, 0.000408383896912326, 1.03283238017634*10^-05, 0.00232979489383883, 0.590940666212816, 0.000316920438536308, 0.00127859613580867, 0.407463817212840, 0.999994606897510, 5.17609604886250*10^-08, 5.32386422310068*10^-08, 5.28810288749134*10^-06, 0.206609258866747, 0.000566593094416052, 8.13188557954753*10^-06, 0.792816016153258, 0.999991730916819, 5.00331055251115*10^-08, 3.34063790361804*10^-08, 8.18564369645056*10^-06, 0.220033453596154, 0.00425995690893422, 0.0572180610293155, 0.718488528465596, 0.997865142152363, 2.44550442323017*10^-06, 1.75548505281313*10^-06, 0.00213065685816122, 0.964691971718664, 0.000445487839631676, 0.000563898121560682, 0.0342986423201434, 0.999762118280277, 7.87393486477125*10^-08, 7.18181430171090*10^-08, 0.000237731162230879, 0.369787959012358, 0.00272368289121565, 0.00701780020148296, 0.620470557894943, 1.46489682738296*10^-14, 0.999999850067678, 4.99322826722400*10^-08, 1.00000024954124*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 6.69630111100113*10^-09, 0.999889315088554, 1.19295372550878*10^-06, 0.000109485261419128, 0.000416102520734849, 0.970478941018101, 0.000247713945703149, 0.0288572425154608, 4.81902432564401*10^-14, 0.999999706256558, 3.33333561287706*10^-08, 2.60410037729724*10^-07, 1.67454422722316*10^-14, 0.999999866095536, 3.39044209981976*10^-08, 1.00000026556912*10^-07, 1.40023264652071*10^-14, 0.999999849999950, 5.00000116132114*10^-08, 1.00000024947352*10^-07, 1.40279942773655*10^-14, 0.999999850000073, 4.99998877195922*10^-08, 1.00000024947364*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 1.66560431194956*10^-14, 0.999999866279651, 3.37203062780474*10^-08, 1.00000026575323*10^-07, 7.98433049830131*10^-08, 8.18464068354558*10^-08, 0.999660418116080, 0.000339420194208729, 0.000213998388400684, 0.000129607463531244, 0.888588228446370, 0.111068165701698, 2.92930149746425*10^-07, 2.19563135378396*10^-07, 0.999429575062814, 0.000569912443900679, 5.14329644265439*10^-05, 2.64102548339620*10^-05, 0.993032285858703, 0.00688987092203679, 0.0966590189676875, 0.00446360471415665, 0.251756697455539, 0.647120678862617, 2.12926382874521*10^-06, 2.00909724035885*10^-06, 0.998349085871284, 0.00164677576764661, 4.99542237747158*10^-06, 0.00122147371105765, 0.951296367516562, 0.0474771633500026, 1.07824887591619*10^-07, 6.42289936887720*10^-08, 0.999657382096022, 0.000342445850096587, 7.29408226726826*10^-06, 4.26840390664120*10^-06, 0.997200424518294, 0.00278801299553237, 2.53861768024925*10^-14, 2.61462672920238*10^-14, 0.999999870408890, 1.29591058324794*10^-07, 6.31901229654999*10^-07, 9.47856216115471*10^-07, 0.00134396620991236, 0.998654454032642, 0.0169547217278078, 1.77160490546745*10^-06, 7.26383215752101*10^-08, 0.983043434028965, 0.324664938404928, 2.55533558747204*10^-06, 3.09694147734326*10^-07, 0.675332196565337, 1.78958596417082*10^-05, 0.000360176756504485, 0.00199051864692794, 0.997631408736926, 0.000103601123113954, 0.0178837457455346, 0.00187601244713895, 0.980136640684213, 0.171927913386833, 0.00543681786555876, 0.118640826567923, 0.703994442179686, 0.283158491426343, 0.296360698888283, 0.0936555028166216, 0.326825306868753, 6.01141409211649*10^-10, 6.55764405707647*10^-10, 9.27182498541578*10^-10, 0.999999997815912, 0.641140498662775, 0.000796336561012832, 0.0139385905700267, 0.344124574206185, 0.477221152495071, 0.00124641271489302, 0.0218114753372417, 0.499720959452794}
and the ideal matrix is given as:
d={1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
How can we find the parameters $\alpha_1,\alpha_2$ and $\alpha_3$ for this example?
One needs the following code to get the $40\times 4$ matrices from the lists:
ArrayReshape[M1, {40, 4}]
ArrayReshape[M2, {40, 4}]
ArrayReshape[M3, {40, 4}]
ArrayReshape[M4, {40, 4}]
I was thinking about using NArgMax
but I dont know how to get the column indices of a matrix in mathematica. In Matlab it is easy. I can just use $[a,b]=\max(M')$, and use the vector b
as my $d_\alpha$. Another option would be LinearProgramming
but the final objective function seems not to be linear.
Added: The main idea is to find a vector of $40\times 1$ from each given matrix $M_i$. For example if we consider $M_1$, then if we find the indices of all rows which have the maximum element:
this will be
d1={1,4,1,4,1,4,1,1,1,4,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,3,3,3,3,3,4,4,1,4,4,4,2,4,4,4}
if we do the same thing to $M_2$ and $M_3$, we get similar vectors like $d_1$. Lets name them as $d_2$ and $d_3$. These three vectors are similar to the ideal vector
d={1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
but each $d_i$ has a few deviations from the ideal one. The deviations do not always occur at the same indexes. Therefore one can take linear combination of these three matrices $M_1,M,2,M_3$ with three parameters $\alpha_1,\alpha_2,\alpha_3$ such that the resulting matrix will give us a vector $d$, let it be $d_{final}$, which has the lowest number of deviations from the ideal vector. I am trying to find these three parameters in an optimum way such that the total number of deviations from the ideal vector will be minimized. The best is of course to be able to obtain the ideal $d$.
Answer
Update: A faster version of maxColumn
ClearAll[maxColumn, objf]
maxColumn[x_] := Position[x, Max[x], 1, 1][[1, 1]]
used with OP's M1
, M2
, M3
and d
:
d={1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
αs = {α1, α2, 1 - α1 - α2};
{m1, m2, m3} = Partition[#, 4] & /@ {M1, M2, M3};
mα = Simplify[αs .{m1, m2, m3}];
objf[α1_?NumericQ, α2_?NumericQ] := Total@Unitize[d - maxColumn /@ mα]
nm = NMinimize[{objf[α1, α2], 0 <= α1 <= 1, 0 <= α2 <= 1, 0 <= α1 + α2 <= 1}, {α1, α2}]
{4., {α1 -> 0.0216585, α2 -> 0.747138}}
Column[{Row[{"dM1 ", Row[maxColumn /@ m1]}],
Row[{"dM2 ", Row[maxColumn /@ m2]}],
Row[{"dM3 ", Row[maxColumn /@ m3]}],
Row[{"d ", Row@d}],
Row[{"solution ", Row[maxColumn /@ (mα /. nm[[2]])]}]},
Alignment -> Center, Dividers -> {None, {4 -> Gray}}]
Original answer:
ClearAll[maxColumn]
maxColumn = FullSimplify @ PiecewiseExpand @
Piecewise[Table[{i, #[[i]] >= Max[#]}, {i, Length@#}], Undefined] &;
Examples:
SeedRandom[1]
{m1, m2, m3, m4} = RandomInteger[1000, {4, 8, 4}];
Row[Column[{maxColumn /@ #, MatrixForm[# /. Max[#] -> Style[Max[#], Red] & /@ #]},
Alignment -> Center] & /@ {m1, m2, m3, m4}, Spacer[10]]
Minimize the number of deviations from ideal
:
αs = {α1, α2, α3, 1 - α1 - α2 - α3};
mα = Simplify[αs .{m1, m2, m3, m4}];
ideal = {1, 1, 2, 2, 3, 3, 4, 4};
nm = NMinimize[{Total@Unitize[ideal- maxColumn /@ mα],
0 <= α1 <= 1, 0 <= α2 <= 1, 0 <= α3 <= 1, 0 <= α1 + α2 + α3 <= 1}, {α1, α2, α3}]
{5., {α1 -> 0.40838672038371643, α2 -> 0.1763031235070461, α3 -> 0.23903363227708174}}
maxColumn /@ (mα /. nm[[2]])
{1, 1, 4, 1, 1, 4, 4, 3}
Comments
Post a Comment