Skip to main content

Maximax optimization over a particular matrix


I have the summation of $N$ matrices which are weighted by some weighing factors (parameters):


$$M_\alpha=\sum_{i=1}^N \alpha_i M_i$$


$$d_{\alpha}=\arg\max_{rows} M_\alpha$$


The ideal vector $d$ is given as $$d=\{1,...,1,2,...,2,3,...,3,...,n,...,n\}$$ where $n$ is the number of columns of the matrix $M_\alpha$, the number of 1s, 2s etc. in $d$ is equal to $m/n$, where $m$ is the total number of rows of matrix $M_\alpha$.



The problem is the following:



$$\max_{\alpha}\sum_{i=1}^m \delta(d(i)-d_{\alpha}(i)))$$


where $\delta$ is the kronecker delta function.



Let $M_1,M_2,M_3$, ($N=3$ different matrices), be all of size $m\times n=40\times 4$ as follows:


M1={0.609955572743010, 0.00170731526668555, 0.000650398480689995, 0.387686713509614, 0.352128847651293, 0.00107332837222463, 0.00383334455135158, 0.642964479425131, 0.994077279324872, 1.25013564041093*10^-05, 1.83150969667110*10^-05, 0.00589190422175699, 0.0541834841056487, 0.00304138308773895, 3.86671456986247*10^-05, 0.942736465660914, 0.999697788212839, 9.55623916740011*10^-08, 6.39890357522832*10^-08, 0.000302052235733568, 0.204343973316372, 0.00221136766252747, 0.0439234933355582, 0.749521165685542, 0.976473913048648, 0.000266115805342264, 0.000205472832931933, 0.0230544983130776, 0.658987200165756, 0.000564938489485245, 0.0129346609515954, 0.327513200393164, 0.993898690171526, 1.90808582766092*10^-05, 1.93454968657929*10^-05, 0.00606288347333146, 0.147358674938040, 0.00179172380408377, 0.0195203233074620, 0.831329277950414, 1.46348315513591*10^-14, 0.999999850064741, 4.99352198389998*10^-08, 1.00000024953831*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 7.15056020814627*10^-07, 0.998855577466965, 1.39432952241941*10^-06, 0.00114231314749163, 3.03631322330502*10^-05, 0.928119733089346, 3.39383500856185*10^-06, 0.0718465099434118, 3.43825818213316*10^-13, 0.999999187866704, 3.33335184201576*10^-08, 7.78799433878354*10^-07, 1.64803181035325*10^-14, 0.999999866633161, 3.33667955721732*10^-08, 1.00000026610674*10^-07, 1.40028993444907*10^-14, 0.999999849999950, 5.00000111369661*10^-08, 1.00000024947352*10^-07, 1.64771550590879*10^-14, 0.999999851056829, 4.89431289795013*10^-08, 1.00000025053039*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 4.85269640409878*10^-14, 0.999999705357355, 3.33995555767818*10^-08, 2.61243040675023*10^-07, 9.09970886275449*10^-07, 8.80847451325440*10^-07, 0.998898067468975, 0.00110014171268767, 0.000141156216087768, 0.000103304767788300, 0.801897371774159, 0.197858167241965, 0.000354646236379861, 0.000259229276184516, 0.979077950299900, 0.0203081741875359, 0.00524216456740572, 3.82038758928901*10^-05, 0.933811067627086, 0.0609085639296154, 0.0934557418369791, 0.00201358072840893, 0.181879061959566, 0.722651615475046, 1.75842997635072*10^-06, 1.69242866594236*10^-06, 0.998472701114213, 0.00152384802714525, 0.000122526265236807, 0.0114968681963201, 0.718905726923267, 0.269474878615176, 3.16860720581802*10^-05, 1.62720917104366*10^-05, 0.994528527213605, 0.00542351462262581, 0.00192738945529482, 7.70759733587586*10^-06, 0.966949633373471, 0.0311152695738981, 1.62865705458289*10^-11, 1.47240955795276*10^-11, 0.999995561266735, 4.43870225434399*10^-06, 0.000126921039929180, 0.00441070141492391, 0.386257612728005, 0.609204764817142, 0.450902449976079, 0.000147286721066355, 4.15927459758263*10^-07, 0.548949847375394, 0.898623991867438, 2.75637762942201*10^-05, 6.46357512424893*10^-06, 0.101341980781144, 1.13673339728006*10^-05, 0.00534149297450797, 0.0431760667261930, 0.951471072965326, 2.17946210105090*10^-06, 0.0438464450864378, 0.00191444464716315, 0.954236930804298, 0.104133865070695, 0.00233635732000811, 0.136379322163522, 0.757150455445775, 0.298595450162043, 0.309137610495699, 0.0971665472242380, 0.295100392118019, 2.77743921924301*10^-05, 0.000272757074581966, 0.00461735316655282, 0.995082115366673, 0.398257110769054, 0.00149912836234743, 0.0431012466209110, 0.557142514247688, 0.341854869609261, 0.00113627516668155, 0.0284582791264737, 0.628550576097584}

M2={0.997997690879728, 0.000399238009679442, 3.16999992360244*10^-05, 0.00157137111135670, 0.668594080378788, 0.000186789531392926, 0.000283770266878297, 0.330935359822941, 0.999999286473402, 5.93571435328038*10^-08, 5.26142963266451*10^-08, 6.01555157717163*10^-07, 0.330951619597146, 0.000186222910665124, 5.45437398752072*10^-07, 0.668861612054790, 0.999979147680591, 4.96810286608811*10^-08, 3.91877816253543*10^-08, 2.07634505990934*10^-05, 0.211201317605335, 0.00460600427667896, 0.0737934133042877, 0.710399264813699, 0.996332512113470, 6.04225168178655*10^-06, 6.96384038056380*10^-06, 0.00365448179446815, 0.975503800955962, 0.000259520870359853, 0.000308614204583400, 0.0239280639690948, 0.999469335416755, 1.40398540348861*10^-07, 1.95284879485547*10^-07, 0.000530328899825564, 0.409719303511683, 0.00207618094675648, 0.00238898574355966, 0.585815529798001, 1.65476478644032*10^-14, 0.999999866498967, 3.35009895669847*10^-08, 1.00000026597255*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 1.50675964375090*10^-09, 0.999950882038016, 2.13978503885356*10^-06, 4.69766701860591*10^-05, 0.000146379417384968, 0.983039995056467, 0.000101958004732298, 0.0167116675214155, 1.64634462009615*10^-14, 0.999999866666555, 3.33334023306566*10^-08, 1.00000026614014*10^-07, 1.88003694055318*10^-14, 0.999999859597872, 4.04020837601738*10^-08, 1.00000025907144*10^-07, 1.63686594466428*10^-14, 0.999999850960123, 4.90398355968660*10^-08, 1.00000025043368*10^-07, 1.40000007835072*10^-14, 0.999999849999949, 5.00000124736750*10^-08, 1.00000024947352*10^-07, 1.64634162951276*10^-14, 0.999999866666614, 3.33333432220560*10^-08, 1.00000026614020*10^-07, 1.77197769335975*10^-14, 0.999999863824475, 3.61754807489410*10^-08, 1.00000026329805*10^-07, 6.24802819657261*10^-08, 6.54206918903079*10^-08, 0.999695805624635, 0.000304066474391365, 4.17629238413074*10^-05, 9.17180023574064*10^-05, 0.941419169889299, 0.0584473491845027, 4.45569337408179*10^-09, 3.09511090552630*10^-09, 0.999930293436625, 6.96990125708923*10^-05, 4.88549459064749*10^-07, 2.51982994299512*10^-07, 0.999330790505086, 0.000668468962460487, 0.0481570811375852, 0.00336430981574971, 0.575753152635769, 0.372725456410896, 2.90593552775306*10^-05, 2.97053505468664*10^-05, 0.993415829090078, 0.00652540620409724, 0.000259682967771992, 0.000275271924348368, 0.979056459214500, 0.0204085858933792, 8.05701380692905*10^-10, 4.92679259518032*10^-10, 0.999969857731615, 3.01409700049762*10^-05, 1.55575333355898*10^-08, 9.46236836499764*10^-09, 0.999868311178764, 0.000131663801334523, 2.05397179809771*10^-14, 2.13593440127015*10^-14, 0.999999900000016, 9.99999424647564*10^-08, 2.27734235440637*10^-12, 2.44167103783077*10^-12, 3.48780511272915*10^-12, 0.999999999991793, 0.00486351254210242, 5.31825160156174*10^-08, 3.34626784870301*10^-08, 0.995136400812703, 0.132452981454285, 0.000178075607065361, 6.95495341114794*10^-05, 0.867299393404539, 6.71378008007283*10^-08, 8.08532794505720*10^-08, 1.07436677324882*10^-07, 0.999999744572242, 2.16271866056670*10^-05, 0.00787511307003729, 0.000241425939162816, 0.991861833804194, 0.249096594065283, 0.00454779747299679, 0.0873186983978455, 0.659036910063874, 0.0287821174289005, 0.0916679032413869, 0.00575134721842477, 0.873798632111288, 1.03497559692374*10^-13, 2.18456032445438*10^-13, 1.58943257903254*10^-13, 0.999999999999519, 0.620115420812621, 0.000248272611226680, 0.00542472006012683, 0.374211586516025, 0.488061381134680, 0.000785818969734454, 0.0221437618269132, 0.489009038068673}

M3={0.997251492885447, 0.000408383896912326, 1.03283238017634*10^-05, 0.00232979489383883, 0.590940666212816, 0.000316920438536308, 0.00127859613580867, 0.407463817212840, 0.999994606897510, 5.17609604886250*10^-08, 5.32386422310068*10^-08, 5.28810288749134*10^-06, 0.206609258866747, 0.000566593094416052, 8.13188557954753*10^-06, 0.792816016153258, 0.999991730916819, 5.00331055251115*10^-08, 3.34063790361804*10^-08, 8.18564369645056*10^-06, 0.220033453596154, 0.00425995690893422, 0.0572180610293155, 0.718488528465596, 0.997865142152363, 2.44550442323017*10^-06, 1.75548505281313*10^-06, 0.00213065685816122, 0.964691971718664, 0.000445487839631676, 0.000563898121560682, 0.0342986423201434, 0.999762118280277, 7.87393486477125*10^-08, 7.18181430171090*10^-08, 0.000237731162230879, 0.369787959012358, 0.00272368289121565, 0.00701780020148296, 0.620470557894943, 1.46489682738296*10^-14, 0.999999850067678, 4.99322826722400*10^-08, 1.00000024954124*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 6.69630111100113*10^-09, 0.999889315088554, 1.19295372550878*10^-06, 0.000109485261419128, 0.000416102520734849, 0.970478941018101, 0.000247713945703149, 0.0288572425154608, 4.81902432564401*10^-14, 0.999999706256558, 3.33333561287706*10^-08, 2.60410037729724*10^-07, 1.67454422722316*10^-14, 0.999999866095536, 3.39044209981976*10^-08, 1.00000026556912*10^-07, 1.40023264652071*10^-14, 0.999999849999950, 5.00000116132114*10^-08, 1.00000024947352*10^-07, 1.40279942773655*10^-14, 0.999999850000073, 4.99998877195922*10^-08, 1.00000024947364*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 1.66560431194956*10^-14, 0.999999866279651, 3.37203062780474*10^-08, 1.00000026575323*10^-07, 7.98433049830131*10^-08, 8.18464068354558*10^-08, 0.999660418116080, 0.000339420194208729, 0.000213998388400684, 0.000129607463531244, 0.888588228446370, 0.111068165701698, 2.92930149746425*10^-07, 2.19563135378396*10^-07, 0.999429575062814, 0.000569912443900679, 5.14329644265439*10^-05, 2.64102548339620*10^-05, 0.993032285858703, 0.00688987092203679, 0.0966590189676875, 0.00446360471415665, 0.251756697455539, 0.647120678862617, 2.12926382874521*10^-06, 2.00909724035885*10^-06, 0.998349085871284, 0.00164677576764661, 4.99542237747158*10^-06, 0.00122147371105765, 0.951296367516562, 0.0474771633500026, 1.07824887591619*10^-07, 6.42289936887720*10^-08, 0.999657382096022, 0.000342445850096587, 7.29408226726826*10^-06, 4.26840390664120*10^-06, 0.997200424518294, 0.00278801299553237, 2.53861768024925*10^-14, 2.61462672920238*10^-14, 0.999999870408890, 1.29591058324794*10^-07, 6.31901229654999*10^-07, 9.47856216115471*10^-07, 0.00134396620991236, 0.998654454032642, 0.0169547217278078, 1.77160490546745*10^-06, 7.26383215752101*10^-08, 0.983043434028965, 0.324664938404928, 2.55533558747204*10^-06, 3.09694147734326*10^-07, 0.675332196565337, 1.78958596417082*10^-05, 0.000360176756504485, 0.00199051864692794, 0.997631408736926, 0.000103601123113954, 0.0178837457455346, 0.00187601244713895, 0.980136640684213, 0.171927913386833, 0.00543681786555876, 0.118640826567923, 0.703994442179686, 0.283158491426343, 0.296360698888283, 0.0936555028166216, 0.326825306868753, 6.01141409211649*10^-10, 6.55764405707647*10^-10, 9.27182498541578*10^-10, 0.999999997815912, 0.641140498662775, 0.000796336561012832, 0.0139385905700267, 0.344124574206185, 0.477221152495071, 0.00124641271489302, 0.0218114753372417, 0.499720959452794}


and the ideal matrix is given as:


d={1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}


How can we find the parameters $\alpha_1,\alpha_2$ and $\alpha_3$ for this example?



One needs the following code to get the $40\times 4$ matrices from the lists:


ArrayReshape[M1, {40, 4}]
ArrayReshape[M2, {40, 4}]
ArrayReshape[M3, {40, 4}]

ArrayReshape[M4, {40, 4}]

I was thinking about using NArgMax but I dont know how to get the column indices of a matrix in mathematica. In Matlab it is easy. I can just use $[a,b]=\max(M')$, and use the vector b as my $d_\alpha$. Another option would be LinearProgramming but the final objective function seems not to be linear.


Added: The main idea is to find a vector of $40\times 1$ from each given matrix $M_i$. For example if we consider $M_1$, then if we find the indices of all rows which have the maximum element:


this will be


d1={1,4,1,4,1,4,1,1,1,4,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,3,3,3,3,3,4,4,1,4,4,4,2,4,4,4}

if we do the same thing to $M_2$ and $M_3$, we get similar vectors like $d_1$. Lets name them as $d_2$ and $d_3$. These three vectors are similar to the ideal vector


d={1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}


but each $d_i$ has a few deviations from the ideal one. The deviations do not always occur at the same indexes. Therefore one can take linear combination of these three matrices $M_1,M,2,M_3$ with three parameters $\alpha_1,\alpha_2,\alpha_3$ such that the resulting matrix will give us a vector $d$, let it be $d_{final}$, which has the lowest number of deviations from the ideal vector. I am trying to find these three parameters in an optimum way such that the total number of deviations from the ideal vector will be minimized. The best is of course to be able to obtain the ideal $d$.



Answer



Update: A faster version of maxColumn


ClearAll[maxColumn, objf]
maxColumn[x_] := Position[x, Max[x], 1, 1][[1, 1]]

used with OP's M1, M2, M3 and d:


d={1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
αs = {α1, α2, 1 - α1 - α2};
{m1, m2, m3} = Partition[#, 4] & /@ {M1, M2, M3};

mα = Simplify[αs .{m1, m2, m3}];
objf[α1_?NumericQ, α2_?NumericQ] := Total@Unitize[d - maxColumn /@ mα]
nm = NMinimize[{objf[α1, α2], 0 <= α1 <= 1, 0 <= α2 <= 1, 0 <= α1 + α2 <= 1}, {α1, α2}]


{4., {α1 -> 0.0216585, α2 -> 0.747138}}



Column[{Row[{"dM1        ", Row[maxColumn /@ m1]}], 
Row[{"dM2 ", Row[maxColumn /@ m2]}],
Row[{"dM3 ", Row[maxColumn /@ m3]}],

Row[{"d ", Row@d}],
Row[{"solution ", Row[maxColumn /@ (mα /. nm[[2]])]}]},
Alignment -> Center, Dividers -> {None, {4 -> Gray}}]

enter image description here


Original answer:


ClearAll[maxColumn]
maxColumn = FullSimplify @ PiecewiseExpand @
Piecewise[Table[{i, #[[i]] >= Max[#]}, {i, Length@#}], Undefined] &;


Examples:


SeedRandom[1]
{m1, m2, m3, m4} = RandomInteger[1000, {4, 8, 4}];

Row[Column[{maxColumn /@ #, MatrixForm[# /. Max[#] -> Style[Max[#], Red] & /@ #]},
Alignment -> Center] & /@ {m1, m2, m3, m4}, Spacer[10]]

enter image description here


Minimize the number of deviations from ideal:


αs = {α1, α2, α3, 1 - α1 - α2 - α3};

mα = Simplify[αs .{m1, m2, m3, m4}];
ideal = {1, 1, 2, 2, 3, 3, 4, 4};
nm = NMinimize[{Total@Unitize[ideal- maxColumn /@ mα],
0 <= α1 <= 1, 0 <= α2 <= 1, 0 <= α3 <= 1, 0 <= α1 + α2 + α3 <= 1}, {α1, α2, α3}]


{5., {α1 -> 0.40838672038371643, α2 -> 0.1763031235070461, α3 -> 0.23903363227708174}}



maxColumn /@ (mα /. nm[[2]])



{1, 1, 4, 1, 1, 4, 4, 3}



Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...