Skip to main content

Maximax optimization over a particular matrix


I have the summation of N matrices which are weighted by some weighing factors (parameters):


Mα=Ni=1αiMi


dα=argmaxrowsMα


The ideal vector d is given as d={1,...,1,2,...,2,3,...,3,...,n,...,n} where n is the number of columns of the matrix Mα, the number of 1s, 2s etc. in d is equal to m/n, where m is the total number of rows of matrix Mα.



The problem is the following:



maxαmi=1δ(d(i)dα(i)))


where δ is the kronecker delta function.



Let M1,M2,M3, (N=3 different matrices), be all of size m×n=40×4 as follows:


M1={0.609955572743010, 0.00170731526668555, 0.000650398480689995, 0.387686713509614, 0.352128847651293, 0.00107332837222463, 0.00383334455135158, 0.642964479425131, 0.994077279324872, 1.25013564041093*10^-05, 1.83150969667110*10^-05, 0.00589190422175699, 0.0541834841056487, 0.00304138308773895, 3.86671456986247*10^-05, 0.942736465660914, 0.999697788212839, 9.55623916740011*10^-08, 6.39890357522832*10^-08, 0.000302052235733568, 0.204343973316372, 0.00221136766252747, 0.0439234933355582, 0.749521165685542, 0.976473913048648, 0.000266115805342264, 0.000205472832931933, 0.0230544983130776, 0.658987200165756, 0.000564938489485245, 0.0129346609515954, 0.327513200393164, 0.993898690171526, 1.90808582766092*10^-05, 1.93454968657929*10^-05, 0.00606288347333146, 0.147358674938040, 0.00179172380408377, 0.0195203233074620, 0.831329277950414, 1.46348315513591*10^-14, 0.999999850064741, 4.99352198389998*10^-08, 1.00000024953831*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 7.15056020814627*10^-07, 0.998855577466965, 1.39432952241941*10^-06, 0.00114231314749163, 3.03631322330502*10^-05, 0.928119733089346, 3.39383500856185*10^-06, 0.0718465099434118, 3.43825818213316*10^-13, 0.999999187866704, 3.33335184201576*10^-08, 7.78799433878354*10^-07, 1.64803181035325*10^-14, 0.999999866633161, 3.33667955721732*10^-08, 1.00000026610674*10^-07, 1.40028993444907*10^-14, 0.999999849999950, 5.00000111369661*10^-08, 1.00000024947352*10^-07, 1.64771550590879*10^-14, 0.999999851056829, 4.89431289795013*10^-08, 1.00000025053039*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 4.85269640409878*10^-14, 0.999999705357355, 3.33995555767818*10^-08, 2.61243040675023*10^-07, 9.09970886275449*10^-07, 8.80847451325440*10^-07, 0.998898067468975, 0.00110014171268767, 0.000141156216087768, 0.000103304767788300, 0.801897371774159, 0.197858167241965, 0.000354646236379861, 0.000259229276184516, 0.979077950299900, 0.0203081741875359, 0.00524216456740572, 3.82038758928901*10^-05, 0.933811067627086, 0.0609085639296154, 0.0934557418369791, 0.00201358072840893, 0.181879061959566, 0.722651615475046, 1.75842997635072*10^-06, 1.69242866594236*10^-06, 0.998472701114213, 0.00152384802714525, 0.000122526265236807, 0.0114968681963201, 0.718905726923267, 0.269474878615176, 3.16860720581802*10^-05, 1.62720917104366*10^-05, 0.994528527213605, 0.00542351462262581, 0.00192738945529482, 7.70759733587586*10^-06, 0.966949633373471, 0.0311152695738981, 1.62865705458289*10^-11, 1.47240955795276*10^-11, 0.999995561266735, 4.43870225434399*10^-06, 0.000126921039929180, 0.00441070141492391, 0.386257612728005, 0.609204764817142, 0.450902449976079, 0.000147286721066355, 4.15927459758263*10^-07, 0.548949847375394, 0.898623991867438, 2.75637762942201*10^-05, 6.46357512424893*10^-06, 0.101341980781144, 1.13673339728006*10^-05, 0.00534149297450797, 0.0431760667261930, 0.951471072965326, 2.17946210105090*10^-06, 0.0438464450864378, 0.00191444464716315, 0.954236930804298, 0.104133865070695, 0.00233635732000811, 0.136379322163522, 0.757150455445775, 0.298595450162043, 0.309137610495699, 0.0971665472242380, 0.295100392118019, 2.77743921924301*10^-05, 0.000272757074581966, 0.00461735316655282, 0.995082115366673, 0.398257110769054, 0.00149912836234743, 0.0431012466209110, 0.557142514247688, 0.341854869609261, 0.00113627516668155, 0.0284582791264737, 0.628550576097584}

M2={0.997997690879728, 0.000399238009679442, 3.16999992360244*10^-05, 0.00157137111135670, 0.668594080378788, 0.000186789531392926, 0.000283770266878297, 0.330935359822941, 0.999999286473402, 5.93571435328038*10^-08, 5.26142963266451*10^-08, 6.01555157717163*10^-07, 0.330951619597146, 0.000186222910665124, 5.45437398752072*10^-07, 0.668861612054790, 0.999979147680591, 4.96810286608811*10^-08, 3.91877816253543*10^-08, 2.07634505990934*10^-05, 0.211201317605335, 0.00460600427667896, 0.0737934133042877, 0.710399264813699, 0.996332512113470, 6.04225168178655*10^-06, 6.96384038056380*10^-06, 0.00365448179446815, 0.975503800955962, 0.000259520870359853, 0.000308614204583400, 0.0239280639690948, 0.999469335416755, 1.40398540348861*10^-07, 1.95284879485547*10^-07, 0.000530328899825564, 0.409719303511683, 0.00207618094675648, 0.00238898574355966, 0.585815529798001, 1.65476478644032*10^-14, 0.999999866498967, 3.35009895669847*10^-08, 1.00000026597255*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 1.50675964375090*10^-09, 0.999950882038016, 2.13978503885356*10^-06, 4.69766701860591*10^-05, 0.000146379417384968, 0.983039995056467, 0.000101958004732298, 0.0167116675214155, 1.64634462009615*10^-14, 0.999999866666555, 3.33334023306566*10^-08, 1.00000026614014*10^-07, 1.88003694055318*10^-14, 0.999999859597872, 4.04020837601738*10^-08, 1.00000025907144*10^-07, 1.63686594466428*10^-14, 0.999999850960123, 4.90398355968660*10^-08, 1.00000025043368*10^-07, 1.40000007835072*10^-14, 0.999999849999949, 5.00000124736750*10^-08, 1.00000024947352*10^-07, 1.64634162951276*10^-14, 0.999999866666614, 3.33333432220560*10^-08, 1.00000026614020*10^-07, 1.77197769335975*10^-14, 0.999999863824475, 3.61754807489410*10^-08, 1.00000026329805*10^-07, 6.24802819657261*10^-08, 6.54206918903079*10^-08, 0.999695805624635, 0.000304066474391365, 4.17629238413074*10^-05, 9.17180023574064*10^-05, 0.941419169889299, 0.0584473491845027, 4.45569337408179*10^-09, 3.09511090552630*10^-09, 0.999930293436625, 6.96990125708923*10^-05, 4.88549459064749*10^-07, 2.51982994299512*10^-07, 0.999330790505086, 0.000668468962460487, 0.0481570811375852, 0.00336430981574971, 0.575753152635769, 0.372725456410896, 2.90593552775306*10^-05, 2.97053505468664*10^-05, 0.993415829090078, 0.00652540620409724, 0.000259682967771992, 0.000275271924348368, 0.979056459214500, 0.0204085858933792, 8.05701380692905*10^-10, 4.92679259518032*10^-10, 0.999969857731615, 3.01409700049762*10^-05, 1.55575333355898*10^-08, 9.46236836499764*10^-09, 0.999868311178764, 0.000131663801334523, 2.05397179809771*10^-14, 2.13593440127015*10^-14, 0.999999900000016, 9.99999424647564*10^-08, 2.27734235440637*10^-12, 2.44167103783077*10^-12, 3.48780511272915*10^-12, 0.999999999991793, 0.00486351254210242, 5.31825160156174*10^-08, 3.34626784870301*10^-08, 0.995136400812703, 0.132452981454285, 0.000178075607065361, 6.95495341114794*10^-05, 0.867299393404539, 6.71378008007283*10^-08, 8.08532794505720*10^-08, 1.07436677324882*10^-07, 0.999999744572242, 2.16271866056670*10^-05, 0.00787511307003729, 0.000241425939162816, 0.991861833804194, 0.249096594065283, 0.00454779747299679, 0.0873186983978455, 0.659036910063874, 0.0287821174289005, 0.0916679032413869, 0.00575134721842477, 0.873798632111288, 1.03497559692374*10^-13, 2.18456032445438*10^-13, 1.58943257903254*10^-13, 0.999999999999519, 0.620115420812621, 0.000248272611226680, 0.00542472006012683, 0.374211586516025, 0.488061381134680, 0.000785818969734454, 0.0221437618269132, 0.489009038068673}

M3={0.997251492885447, 0.000408383896912326, 1.03283238017634*10^-05, 0.00232979489383883, 0.590940666212816, 0.000316920438536308, 0.00127859613580867, 0.407463817212840, 0.999994606897510, 5.17609604886250*10^-08, 5.32386422310068*10^-08, 5.28810288749134*10^-06, 0.206609258866747, 0.000566593094416052, 8.13188557954753*10^-06, 0.792816016153258, 0.999991730916819, 5.00331055251115*10^-08, 3.34063790361804*10^-08, 8.18564369645056*10^-06, 0.220033453596154, 0.00425995690893422, 0.0572180610293155, 0.718488528465596, 0.997865142152363, 2.44550442323017*10^-06, 1.75548505281313*10^-06, 0.00213065685816122, 0.964691971718664, 0.000445487839631676, 0.000563898121560682, 0.0342986423201434, 0.999762118280277, 7.87393486477125*10^-08, 7.18181430171090*10^-08, 0.000237731162230879, 0.369787959012358, 0.00272368289121565, 0.00701780020148296, 0.620470557894943, 1.46489682738296*10^-14, 0.999999850067678, 4.99322826722400*10^-08, 1.00000024954124*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 6.69630111100113*10^-09, 0.999889315088554, 1.19295372550878*10^-06, 0.000109485261419128, 0.000416102520734849, 0.970478941018101, 0.000247713945703149, 0.0288572425154608, 4.81902432564401*10^-14, 0.999999706256558, 3.33333561287706*10^-08, 2.60410037729724*10^-07, 1.67454422722316*10^-14, 0.999999866095536, 3.39044209981976*10^-08, 1.00000026556912*10^-07, 1.40023264652071*10^-14, 0.999999849999950, 5.00000116132114*10^-08, 1.00000024947352*10^-07, 1.40279942773655*10^-14, 0.999999850000073, 4.99998877195922*10^-08, 1.00000024947364*10^-07, 1.64634157803843*10^-14, 0.999999866666615, 3.33333422046731*10^-08, 1.00000026614020*10^-07, 1.66560431194956*10^-14, 0.999999866279651, 3.37203062780474*10^-08, 1.00000026575323*10^-07, 7.98433049830131*10^-08, 8.18464068354558*10^-08, 0.999660418116080, 0.000339420194208729, 0.000213998388400684, 0.000129607463531244, 0.888588228446370, 0.111068165701698, 2.92930149746425*10^-07, 2.19563135378396*10^-07, 0.999429575062814, 0.000569912443900679, 5.14329644265439*10^-05, 2.64102548339620*10^-05, 0.993032285858703, 0.00688987092203679, 0.0966590189676875, 0.00446360471415665, 0.251756697455539, 0.647120678862617, 2.12926382874521*10^-06, 2.00909724035885*10^-06, 0.998349085871284, 0.00164677576764661, 4.99542237747158*10^-06, 0.00122147371105765, 0.951296367516562, 0.0474771633500026, 1.07824887591619*10^-07, 6.42289936887720*10^-08, 0.999657382096022, 0.000342445850096587, 7.29408226726826*10^-06, 4.26840390664120*10^-06, 0.997200424518294, 0.00278801299553237, 2.53861768024925*10^-14, 2.61462672920238*10^-14, 0.999999870408890, 1.29591058324794*10^-07, 6.31901229654999*10^-07, 9.47856216115471*10^-07, 0.00134396620991236, 0.998654454032642, 0.0169547217278078, 1.77160490546745*10^-06, 7.26383215752101*10^-08, 0.983043434028965, 0.324664938404928, 2.55533558747204*10^-06, 3.09694147734326*10^-07, 0.675332196565337, 1.78958596417082*10^-05, 0.000360176756504485, 0.00199051864692794, 0.997631408736926, 0.000103601123113954, 0.0178837457455346, 0.00187601244713895, 0.980136640684213, 0.171927913386833, 0.00543681786555876, 0.118640826567923, 0.703994442179686, 0.283158491426343, 0.296360698888283, 0.0936555028166216, 0.326825306868753, 6.01141409211649*10^-10, 6.55764405707647*10^-10, 9.27182498541578*10^-10, 0.999999997815912, 0.641140498662775, 0.000796336561012832, 0.0139385905700267, 0.344124574206185, 0.477221152495071, 0.00124641271489302, 0.0218114753372417, 0.499720959452794}


and the ideal matrix is given as:


d={1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}


How can we find the parameters α1,α2 and α3 for this example?



One needs the following code to get the 40×4 matrices from the lists:


ArrayReshape[M1, {40, 4}]
ArrayReshape[M2, {40, 4}]
ArrayReshape[M3, {40, 4}]

ArrayReshape[M4, {40, 4}]

I was thinking about using NArgMax but I dont know how to get the column indices of a matrix in mathematica. In Matlab it is easy. I can just use [a,b]=max(M), and use the vector b as my dα. Another option would be LinearProgramming but the final objective function seems not to be linear.


Added: The main idea is to find a vector of 40×1 from each given matrix Mi. For example if we consider M1, then if we find the indices of all rows which have the maximum element:


this will be


d1={1,4,1,4,1,4,1,1,1,4,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,3,3,3,3,3,4,4,1,4,4,4,2,4,4,4}

if we do the same thing to M2 and M3, we get similar vectors like d1. Lets name them as d2 and d3. These three vectors are similar to the ideal vector


d={1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}


but each di has a few deviations from the ideal one. The deviations do not always occur at the same indexes. Therefore one can take linear combination of these three matrices M1,M,2,M3 with three parameters α1,α2,α3 such that the resulting matrix will give us a vector d, let it be dfinal, which has the lowest number of deviations from the ideal vector. I am trying to find these three parameters in an optimum way such that the total number of deviations from the ideal vector will be minimized. The best is of course to be able to obtain the ideal d.



Answer



Update: A faster version of maxColumn


ClearAll[maxColumn, objf]
maxColumn[x_] := Position[x, Max[x], 1, 1][[1, 1]]

used with OP's M1, M2, M3 and d:


d={1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
αs = {α1, α2, 1 - α1 - α2};
{m1, m2, m3} = Partition[#, 4] & /@ {M1, M2, M3};

mα = Simplify[αs .{m1, m2, m3}];
objf[α1_?NumericQ, α2_?NumericQ] := Total@Unitize[d - maxColumn /@ mα]
nm = NMinimize[{objf[α1, α2], 0 <= α1 <= 1, 0 <= α2 <= 1, 0 <= α1 + α2 <= 1}, {α1, α2}]


{4., {α1 -> 0.0216585, α2 -> 0.747138}}



Column[{Row[{"dM1        ", Row[maxColumn /@ m1]}], 
Row[{"dM2 ", Row[maxColumn /@ m2]}],
Row[{"dM3 ", Row[maxColumn /@ m3]}],

Row[{"d ", Row@d}],
Row[{"solution ", Row[maxColumn /@ (mα /. nm[[2]])]}]},
Alignment -> Center, Dividers -> {None, {4 -> Gray}}]

enter image description here


Original answer:


ClearAll[maxColumn]
maxColumn = FullSimplify @ PiecewiseExpand @
Piecewise[Table[{i, #[[i]] >= Max[#]}, {i, Length@#}], Undefined] &;


Examples:


SeedRandom[1]
{m1, m2, m3, m4} = RandomInteger[1000, {4, 8, 4}];

Row[Column[{maxColumn /@ #, MatrixForm[# /. Max[#] -> Style[Max[#], Red] & /@ #]},
Alignment -> Center] & /@ {m1, m2, m3, m4}, Spacer[10]]

enter image description here


Minimize the number of deviations from ideal:


αs = {α1, α2, α3, 1 - α1 - α2 - α3};

mα = Simplify[αs .{m1, m2, m3, m4}];
ideal = {1, 1, 2, 2, 3, 3, 4, 4};
nm = NMinimize[{Total@Unitize[ideal- maxColumn /@ mα],
0 <= α1 <= 1, 0 <= α2 <= 1, 0 <= α3 <= 1, 0 <= α1 + α2 + α3 <= 1}, {α1, α2, α3}]


{5., {α1 -> 0.40838672038371643, α2 -> 0.1763031235070461, α3 -> 0.23903363227708174}}



maxColumn /@ (mα /. nm[[2]])



{1, 1, 4, 1, 1, 4, 4, 3}



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]