I am using homotopy perturbation method to solve nonlinear ODE.
The first step is to introduce P parameter and collect different order of P.
The code is like this:
Collect[(1 -
p) ((((1 +
De^2 (Derivative[1][u0] + p Derivative[1][u1] +
p^2 Derivative[1][u2] + p^3 Derivative[1][u3])^2)^(
1/2 (-3 + n)) (1 +
De^2 n (Derivative[1][u0] + p Derivative[1][u1] +
p^2 Derivative[1][u2] +
p^3 Derivative[1][u3])^2) (Derivative[2][u0] +
p Derivative[2][u1] + p^2 Derivative[2][u2] +
p^3 Derivative[2][u3])) (Derivative[1][u0] +
p Derivative[1][u1] + p^2 Derivative[1][u2] +
p^3 Derivative[1][u3])) + (1 +
De^2 ((Derivative[1][u0] + p Derivative[1][u1] +
p^2 Derivative[1][u2] + p^3 Derivative[1][u3]))^2)^((
n - 1)/2) (Derivative[1][u0] + p Derivative[1][u1] +
p^2 Derivative[1][u2] +
p^3 Derivative[1][u3]) (Derivative[2][u0] +
p Derivative[2][u1] + p^2 Derivative[2][u2] +
p^3 Derivative[2][u3])) +
p (-Ha^2 (u0 + p u1 + p^2 u2 +
p^3 u3) + (((1 +
De^2 (Derivative[1][u0] + p Derivative[1][u1] +
p^2 Derivative[1][u2] + p^3 Derivative[1][u3])^2)^(
1/2 (-3 + n)) (1 +
De^2 n (Derivative[1][u0] + p Derivative[1][u1] +
p^2 Derivative[1][u2] +
p^3 Derivative[1][u3])^2) (Derivative[2][u0] +
p Derivative[2][u1] + p^2 Derivative[2][u2] +
p^3 Derivative[2][u3])) (Derivative[1][u0] +
p Derivative[1][u1] + p^2 Derivative[1][u2] +
p^3 Derivative[1][u3])) + (1 +
De^2 ((Derivative[1][u0] + p Derivative[1][u1] +
p^2 Derivative[1][u2] + p^3 Derivative[1][u3]))^2)^((
n - 1)/2) (Derivative[1][u0] + p Derivative[1][u1] +
p^2 Derivative[1][u2] +
p^3 Derivative[1][u3]) (Derivative[2][u0] +
p Derivative[2][u1] + p^2 Derivative[2][u2] +
p^3 Derivative[2][u3])), p]
The problem is that don't get anything back
What do you think?
Comments
Post a Comment