Skip to main content

calculus and analysis - Strange behaviour of integrals with Cos, Sin, and Exp


Bug introduced in 8.0.4 or earlier and persisting through 11.0.1




During the study of the problem How to solve this integration? I have discovered a strange behaviour of some integrals.


I would consider it a bug.


$Version

(* Out[39]= "10.1.0 for Microsoft Windows (64-bit) (March 24, 2015)" *)


Consider these integrals


c = 
Integrate[E^-Sqrt[u/2] Cos[ Sqrt[u/2] - u z], {u, 0, ∞}, Assumptions -> {z > 0}]

(*
Out[34]= (E^(-(1/4)/z) Sqrt[Ï€])/(2 z^(3/2))
*)

s =
Integrate[E^-Sqrt[u/2] Sin[ Sqrt[u/2] - u z], {u, 0, ∞}, Assumptions -> {z > 0}]


(*
Out[35]= -(1/z) + (E^(-(1/4)/z) Sqrt[Ï€] Erfi[1/(2 Sqrt[z])])/(2 z^(3/2))
*)

Now form cs = c + I s which can be written, using Euler's fomula, as


cs = 
Integrate[E^-Sqrt[u/2] Exp[I (Sqrt[u/2] - u z)], {u, 0, ∞},
Assumptions -> {z > 0}] (* wrong *)


(*
Out[36]= (I (-Sqrt[z] + DawsonF[1/(2 Sqrt[z])]))/z^(3/2)
*)

FunctionExpand[%]

(*
Out[4]= (I (-Sqrt[z] + 1/2 E^(-(1/4)/z) Sqrt[Ï€] Erfi[1/(2 Sqrt[z])]))/z^(3/2)
*)


But this result is wrong because it "forgets" the real part and gives only the imaginary part I s. The same happens with the assumptions of real z.


Dropping the assumptions completely we get the result


Integrate[E^-Sqrt[u/2] Exp[I (Sqrt[u/2] - u z)], {u, 0, ∞}]

(*
Out[38]=
ConditionalExpression[
-(I/z) + (E^(-(1/4)/z) Sqrt[Ï€] (1 + I Erfi[1/(2 Sqrt[z])]))/(2 z^(3/2)),
Im[z] < 0]
*)


which is correct only if we neglect the generated condition.




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...