Skip to main content

differential equations - DSolve not finding solution I expected


Try to solve the following ODE via DSolve


{y(x)+2y(x)exy(x)2=e2x+exy(0)=1


The expected solution is y(x)=ex, but Mathematica produces the message:



DSolve::bvfail: For some branches of the general solution, the given boundary conditions lead to an empty solution




Note: y(x)=ex is obviously a special solution to the original ODE and satisfies the initial/boundary value condition which can be easily verified by substituting it into the ODE.


Additionally, it is easy to deduct that: y(0)=1y(0)=1 for this ODE;


How to handle it?



Answer



The problem - Genericity of solutions


The problem we encounter here is that DSolve can return only a generic solution however that general solution cannot satisfy such an initial condition as y'[0] == 1. The issue is related to an arbitrary choice of constants of integration i.e. such constants that are specific to certain types of a differential equations DSolve tries to solve during the integration process.


DSolve[{y'[x] + 2 E^x y[x] - y[x]^2 == E^(2 x) + E^x, y'[0] == 1}, y[x], x]


DSolve::bvnul: For some branches of the general solution, the given boundary conditions 

lead to an empty solution. >>

{}

Solving the ODE without the initial condition we will see that the general solution excludes exceptional ones:


y[x_, c_] = y[x] /. First @ DSolve[{ y'[x] + 2 E^x y[x] - y[x]^2 == E^(2 x) + E^x},
y[x], x] /. C[1] -> c


 E^x + 1/(c - x)


Namely there is no constant c reducing the general solution to E^x however putting e.g. y'[0] == 2 we will find a solution:


DSolve[{y'[x] + 2 E^x y[x] - y[x]^2 == E^(2 x) + E^x, y'[0] == 2}, y[x], x]// First


 {y[x] -> (-1 - E^x + E^x x)/(-1 + x)}

This is quite similar issue to one we can find here: Solving a differential equation with initial conditions.


The problem cannot be fixed changing the variables in the ODE to :


y'[x] + 2 E^x y[x] - y[x]^2 == E^(2 x) + E^x /. 

{y[x] -> z[x] + E^x, y'[x] -> z'[x] + E^x} // Simplify


z[x]^2 == z'[x]

DSolve[{z'[x] == z[x]^2, z'[0] == 0}, z[x], x]


DSolve::bvnul: For some branches of the general solution, the given boundary conditions 
lead to an empty solution. >>


{}

Remedy


Introducing an initial condition in a general symbolic way we can find also the special solution:


f[x_, c_] = z[x] /. DSolve[{z'[x] == z[x]^2, z'[0] == c}, z[x], x]


 { -(Sqrt[c]/(-1 + Sqrt[c] x)), -(Sqrt[c]/(1 + Sqrt[c] x))}


f[x, c] /. Solve[D[f[x, c] == 0], c]


{ 0, 0}

I.e. we get the special solution y[x] == E^x.


we can see that the same trick can work also in the original equation.


Alternatively the general solution can be reparametrized in a different way:


E^x + c/(1 - x)


yields also the special solution although this excludes e.g. E^x - 1/x


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]