Skip to main content

faq - Can I simplify an expression into form which uses my own definitions?


This seems like a simple thing to do, but I couldn't find anything relevant from Mathematica documentation.


So suppose I have an expression:


a*b/(a + a*Cos[a/b])


And I have defined:


k=a/b

Now I want to simplify the expression above so that the simplify would use my definition of k in place of a/b in as many places as possible so that the final expression would look something like:


a/(k+k*Cos[k])

This was just a simple example I made up to demonstrate what I'd like to do, but I have encountered a similar situations many times every now and then.



Answer



Daniel Lichtblau and Andrzej Koslowski posted a solution in mathgroup, which I adjusted marginally. (I like to use german identifiers, because they will never clash with Mma builtins). That's the code:



SetAttributes[termErsetzung,Listable];
termErsetzung[expr_, rep_, vars_] :=
Module[{num = Numerator[expr], den = Denominator[expr],
hed = Head[expr], base, expon},
If[PolynomialQ[num, vars] && PolynomialQ[den, vars] && ! NumberQ[den],
termErsetzung[num, rep, vars]/termErsetzung[den, rep, vars], (*else*)
If[hed === Power && Length[expr] === 2,
base = termErsetzung[expr[[1]], rep, vars];
expon = termErsetzung[expr[[2]], rep, vars];
PolynomialReduce[base^expon, rep, vars][[2]], (*else*)

If[Head[Evaluate[hed]] === Symbol &&
MemberQ[Attributes[Evaluate[hed]], NumericFunction],
Map[termErsetzung[#, rep, vars] &, expr], (*else*)
PolynomialReduce[expr, rep, vars][[2]] ]]]
];

TermErsetzung[rep_Equal,vars_][expr_]:=
termErsetzung[expr,Evaluate[Subtract@@rep],vars]//Union;

Usage is like this:



a*b/(a + a*Cos[a/b]) // TermErsetzung[k b == a, b]


a/(k (1 + Cos[k]))



The first parameter is the "replacement equation", the second the variable (or list of variables) to be eliminated:


a*b/(a + a*Cos[a/b]) // TermErsetzung[k b == a, {a, b}] 


{b/(1 + Cos[k]), a/(k (1 + Cos[k]))}




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...