Skip to main content

replacement - Replace expressions with symbols


First of all: I'm new to Mathematica, so I would appreciate it if the answers are quite complete.


I have the result of calculation that is expressed in $\sin$ and $\cos$. Now, all of these can be rewritten in terms of the values $T_j = \frac\pi{j} (1 - \cos^j(\alpha_\text{max})$). So now my question is, how do I "translate" for example $1 - \cos(\alpha_{\text{max}})$ to $T_1$ using Mathematica? Of course, it sometimes requires some goniometric formulas.


I have tried to use the function Eliminate but it gives me a lot of garbage.


A minimal example:


Eliminate[
Join[{g ==
1/3*Pi*(Subscript[v, y]^2*Cos[Subscript[α, max]]^3 -
2*Subscript[v, z]^2*Cos[Subscript[α, max]]^3 -
3*Subscript[v, y]^2*Cos[Subscript[α, max]] +

2*Subscript[v, z]^2 + 2*Subscript[v, y]^2)},
Table[Subscript[t, i] ==
Pi/i (1 - Cos[Subscript[α, max]]^i), {i, 1,
5}]], {Subscript[α, max]}]

--------Edit--------


Following Daniel Lichtblau's code I want to write the following result of an integral in terms of the $T_i$: $\frac16 k^2 \pi [8 - 9 \cos(\alpha_{\text{max}}) + \cos(3 \alpha_{\text{max}})] v_y$. Maple computes this as $\frac23 k^2 [2 + \cos( \alpha_{\text{max}})^3 - 3 \cos(\alpha_{\text{max}})]v_y$ and a FullSimplify tells me that these expressions are actually the same. So, some visual inspection tells me that this is $2(T_1 - T_3)v_y$.


However, the PolynomialReduce yields $\frac16 [-k^2 \pi v_y + k^2 \pi \cos(3 \alpha_{\text{max}}) v_y + 9 k^2 T_1 v_y]$ which is clearly not what I want.



Answer



I'm not really clear on the scope of the question, but this might provide a start.



In[340]:= 
PolynomialReduce[1 - Cos[α], t[1] - π (1 - Cos[α]),
Cos[α]][[2]]

Out[340]= t[1]/Ï€

--- edit ---


Here is your example. I change equations to expressions in effect by taking differences. I create a Groebner basis for the defining expressions; that might not be necessary in this example. I order variables so that the one to be eliminated, Cos[alpha-sub-max], is highest. Your Eliminate came close but I think you'd really need to use Cos[alpha...] instead of just the alpha.


In[348]:= 
vars = Join[{Cos[Subscript[α, max]]},

Table[Subscript[t, i], {i, 1, 5}]];
polys = Table[
Subscript[t, i] == Pi/i (1 - Cos[Subscript[α, max]]^i), {i,
1, 5}];
gb = GroebnerBasis[polys, vars];

Now we can use PolynomialReduce to rewrite the expression of interest, replacing wherever possible that cosine with variables lower in the term order.


In[351]:= 
PolynomialReduce[
1/3*Pi*(Subscript[v, y]^2*Cos[Subscript[α, max]]^3 -

2*Subscript[v, z]^2*Cos[Subscript[α, max]]^3 -
3*Subscript[v, y]^2*Cos[Subscript[α, max]] +
2*Subscript[v, z]^2 + 2*Subscript[v, y]^2), gb, vars][[2]]

Out[351]= Subscript[t, 1]*Subscript[v, y]^2 -
Subscript[t, 3]*Subscript[v, y]^2 +
2*Subscript[t, 3]*Subscript[v, z]^2

--- end edit ---


--- edit 2 ---



I saw (but no longer can locate) a comment asking about situations where there are related variables such as Sin[Subscript[α, max]/2]. This poses two wrinkles. First is that one will need to work with the smallest fractional angle in order to have polynomial relations between all such angles that can be algebraically related. The second is that one must also add the obvious trig relations such as Sin[XXX]^2+Cos[XXX]^2-1 where XXX is this smallest fractional angle. (Actually I am not sure if this relation must be added, or if GroebnerBasis preprocessing will figure that out for you. Assume it must be added by hand and you won't go too far astray.)


--- end edit 2 ---


--- edit 3 ---


Elaborating on edit 2 using an example from a comment, we use more trig variables and relationship polynomials.


In[74]:= vars = 
Join[{Sin[Subscript[α, max]/2],
Cos[Subscript[α, max]/2], Sin[Subscript[α, max]],
Cos[Subscript[α, max]]}, Table[Subscript[t, i], {i, 1, 5}]];
polys = Join[{Cos[Subscript[α, max]]^2 +
Sin[Subscript[α, max]]^2 - 1,

Cos[Subscript[α, max]/2]^2 +
Sin[Subscript[α, max]/2]^2 - 1,
Cos[Subscript[α,
max]] - (Cos[Subscript[α, max]/2]^2 -
Sin[Subscript[α, max]/2]^2),
Sin[Subscript[α, max]] -
2*Cos[Subscript[α, max]/2]*
Sin[Subscript[α, max]/2]},
Table[Subscript[t, i] -
Pi/i (1 - Cos[Subscript[α, max]]^i), {i, 1, 5}]];

gb = GroebnerBasis[polys, vars];

In[66]:= p1 =
4/3*k^2*Sin[Subscript[α, max]/2]^4*(3*Pi - t[1])*
Subscript[v, y];

In[80]:= PolynomialReduce[p1, gb, vars][[2]]

Out[80]= -((2*(-3*k^2*Pi*Subscript[t, 1]*Subscript[v, y] +
3*k^2*Pi*Subscript[t, 2]*

Subscript[v, y] +
k^2*Subscript[t, 1]*Subscript[v, y]*t[1] -
k^2*Subscript[t, 2]*Subscript[v, y]*t[1]))/(3*Pi))

Here is another requested example. In this case preprocessing with TrigExpand causes a multiple angle trig term to disappear, allowing the polynomial replacement to work to its fullest capability.


In[91]:= p2 = 
1/6*k^2 Pi*(8 - 9*Cos[Subscript[α, max]] +
Cos[3*Subscript[α, max]])*Subscript[v, y];

In[92]:= PolynomialReduce[p2 // TrigExpand, gb, vars][[2]]


Out[92]= 2*(k^2*Subscript[t, 1]*Subscript[v, y] -
k^2*Subscript[t, 3]*Subscript[v, y])

--- end edit 3 ---


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...