Skip to main content

plotting - Mark an 2d-area on a 3dPlot (ListPlot3d)



I have a list {(IC,s,FK)}, which I use to generate a 3d-plot with the help of the command ListPlot3D. IC and s go from 0 to 1.


enter image description here


There is an area (lets say 0.11 < IC < 0.3, 0.1 < s < 0.4) which is specially important, because this is the physical range. For some reason I want to plot the whole parameter space, but highlight (for example with a red rectangle) this physical range. It would be great to frame the physical range with a red rectangle on the surface of the 3d-Plot. (In the end, this 2d-rectangle should look similar to these mesh lines, but it should frame the range, defined above).


Do you have any idea?



Answer



With


 data = Table[{x = RandomReal[{-1, 1}], y = RandomReal[{-1, 1}], x^2 - y^2}, {300}];

Three possible methods are




  1. using ColorFunction

  2. using a combination of Mesh, MeshFunctions and MeshShading, (or, and better yet, just Mesh and MeshShading as in @Brett's answer)

  3. produce two plots using different RegionFunction settings and combine them using Show.


Using ColorFunction:


 ListPlot3D[data, BoxRatios -> Automatic, Mesh -> None, 
ColorFunction -> Function[{x, y, z}, If[-.5 < x < .5 && -.3 < y < .1, Red, White]],
ColorFunctionScaling -> False, BoxRatios -> Automatic,
MaxPlotPoints -> 100, Lighting -> "Neutral"]


enter image description here


or with a different setting for the ColorFunction, say:


 ColorFunction -> Function[{x, y, z}, If[-.5 < x < .5 && -.3 < y < .1,
ColorData["DeepSeaColors", (1 + x)/2], Directive[Opacity[.7], Hue[(1 + z)/2]]]]

enter image description here


Using Mesh, MeshFunctions and MeshShading:


 ListPlot3D[data,
MeshFunctions -> {Boole[-.5 < #1 < .5 && -.2 < #2 < .75] &},
Mesh -> {{1}}, MeshShading -> {White, Red},

BoxRatios -> Automatic, MaxPlotPoints -> 100, Lighting -> "Neutral"]

enter image description here


Using RegionFunction and Show:


lp1 = ListPlot3D[data,
RegionFunction -> (! (-.5 < #1 < .5 && -.2 < #2 < .75) &),
Mesh -> None, BoxRatios -> 1,
MaxPlotPoints -> 100, Lighting -> "Neutral",
ColorFunction -> (Directive[Opacity[.9], Hue[#1]] &),
Lighting -> "Neutral", ImageSize -> 300];

lp2 = ListPlot3D[data,
RegionFunction -> ((-.5 < #1 < .5 && -.2 < #2 < .75) &),
Mesh -> None, BoxRatios -> 1,
MaxPlotPoints -> 100, Lighting -> "Neutral",
ColorFunction -> (Red &), Lighting -> "Neutral",
ImageSize -> 300];
Panel@Row[{lp1, lp2, Show[{lp1, lp2}]}, Spacer[5]]

enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]