Skip to main content

How to Export this animation as a gif file for powerpoint presentation



Animate[
Manipulate[
ParametricPlot[ Evaluate[{x[t], v[t]} /.
Quiet @ NDSolve[
{x'[t] == v[t],
v'[t] == μ (1 - x[t]^2) v[t] - x[t] + A*Cos[ω*t],
x[0] == xv0[[1]], v[0] == xv0[[2]]}, {x[t], v[t]}, {t, 0, tt}]],
{t, 0, tt}, ImageSize -> {450, 450}, PlotRange -> 4,
AxesLabel -> {TraditionalForm[x[t]], TraditionalForm[v[t]]},
PlotStyle -> PointSize[.5]

],
{{μ, 0.75, "parameter μ"}, 0, 3, 0.01, Appearance -> "Labeled"},
{{ω, 0.75, "parameter ω"}, 0, 3, 0.01, Appearance -> "Labeled"},
{{A, 0.75, "parameter A"}, 0, 3, 0.01, Appearance -> "Labeled"},
{{xv0, {1, 1}}, {-4, -4}, {4, 4}, Locator}], {tt, 0, 200},
AnimationRate -> 3, AnimationRepetitions -> 3, AnimationRunning -> True
]

Answer



You have to set values which are dynamic in Manipulate.


μ = .75; ω = .75; A = .075; xv0 = {1, 1};


Table pictures for different tt:


sol = Quiet@NDSolve[{x'[t] == v[t], v'[t] == μ (1 - x[t]^2) v[t] - x[t] + A*Cos[ω*t], 
x[0] == xv0[[1]], v[0] == xv0[[2]]
}, {x[t], v[t]}, {t, 0, 20}];

dat = Table[
ParametricPlot[Evaluate[{x[t], v[t]} /. sol, {t, 0, tt},
PlotRange -> 4, AxesLabel -> {x[t], v[t]}]
, {tt, .1, 20, .2}];


Create gif.


SetDirectory@NotebookDirectory[]
Export["gif.gif", dat]

enter image description here


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

plotting - Magnifying Glass on a Plot

Although there is a trick in TEX magnifying glass but I want to know is there any function to magnifying glass on a plot with Mathematica ? For example for a function as Sin[x] and at x=Pi/6 Below, this is just a picture desired from the cited site. the image got huge unfortunately I don't know how can I change the size of an image here! Answer Insetting a magnified part of the original Plot A) by adding a new Plot of the specified range xPos = Pi/6; range = 0.2; f = Sin; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; Plot[f[x], {x, 0, 5}, Epilog -> {Transparent, EdgeForm[Thick], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], {4., 0.5}]}, ImageSize -> 700] B) by adding a new Plot within a Circle mf = RegionMember[Disk[{xPos, f[xPos]}, {range, range/GoldenRatio}]] Show...