Skip to main content

FindInstance boolean program is slow, but fast with BooleanConvert


FindInstance can be incredibly slow to solve a boolean program, but it can be significantly improved by using BooleanConvert to convert the constraints to "conjunctive normal form".


For example, here is a boolean program with some random constraints. My laptop can't solve it in 10 seconds.


vars = Array[x, 50];
SeedRandom[1234];
const = And @@ Table[Or[
Xor[RandomChoice[vars], RandomChoice[vars]],
Xor[RandomChoice[vars], RandomChoice[vars]]], 100];


TimeConstrained[FindInstance[const, vars, Booleans], 10, "Timeout!"]

(* Timeout! *)

Converting the constraints to "conjunctive normal form" helps FindInstance find a solution almost instantly:


AbsoluteTiming@FindInstance[ BooleanConvert[const,"CNF"], vars, Booleans ] // Short

(* {0.014715, {{x[1] -> False, x[2] -> False, <<46>>, x[49] -> False, x[50] -> False}}} *)

Wolfram's 4-color map-coloring example uses this trick; without BooleanConvert, it takes forever to run.



Does anyone know why this is so? I wish the FindInstance documentation would've mentioned this trick.


Related: 1, 2


Update: A colleague pointed out that "conjunctive normal form" has the appealing property that it allows short-circuiting, which allows the satisfiability solver to prune away large branches of the tree of candidate variable choices. For example,


BooleanConvert[Nand[x, y]~And~Xor[y, z], "CNF"]

converts the expression into the AND of a bunch of OR expressions:


(! x || ! y) && (! y || ! z) && (y || z)

When testing a candidate set of values for x,y,z, the solver can evaluate each OR expression in turn and stop as soon as it encounters one that evaluates to FALSE. For example, once it concludes that x=TRUE, y=TRUE makes the first OR clause FALSE, it can prune off the lower levels of the tree and doesn't need to try either value of z.




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...